\left\{ \begin{array} { l } { x + 3 = y } \\ { x - 2 y = 5 } \end{array} \right.
x, y खातीर सोडोवचें
x=-11
y=-8
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
x+3-y=0
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
x-y=-3
दोनूय कुशींतल्यान 3 वजा करचें. किदेंय शुन्यातल्यान वजा केल्यार अभाव दाखयता.
x-y=-3,x-2y=5
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x-y=-3
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=y-3
समिकरणाच्या दोनूय कुशींतल्यान y ची बेरीज करची.
y-3-2y=5
x-2y=5 ह्या दुस-या समिकरणांत x खातीर y-3 बदलपी घेवचो.
-y-3=5
-2y कडेन y ची बेरीज करची.
-y=8
समिकरणाच्या दोनूय कुशींतल्यान 3 ची बेरीज करची.
y=-8
दोनुय कुशींक -1 न भाग लावचो.
x=-8-3
x=y-3 त y खातीर -8 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-11
-8 कडेन -3 ची बेरीज करची.
x=-11,y=-8
प्रणाली आतां सुटावी जाली.
x+3-y=0
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
x-y=-3
दोनूय कुशींतल्यान 3 वजा करचें. किदेंय शुन्यातल्यान वजा केल्यार अभाव दाखयता.
x-y=-3,x-2y=5
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\5\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-1\right)}&-\frac{-1}{-2-\left(-1\right)}\\-\frac{1}{-2-\left(-1\right)}&\frac{1}{-2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-3\\5\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}-3\\5\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-3\right)-5\\-3-5\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\-8\end{matrix}\right)
अंकगणीत करचें.
x=-11,y=-8
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+3-y=0
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
x-y=-3
दोनूय कुशींतल्यान 3 वजा करचें. किदेंय शुन्यातल्यान वजा केल्यार अभाव दाखयता.
x-y=-3,x-2y=5
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
x-x-y+2y=-3-5
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून x-y=-3 तल्यान x-2y=5 वजा करचो.
-y+2y=-3-5
-x कडेन x ची बेरीज करची. अटी x आनी -x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
y=-3-5
2y कडेन -y ची बेरीज करची.
y=-8
-5 कडेन -3 ची बेरीज करची.
x-2\left(-8\right)=5
x-2y=5 त y खातीर -8 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x+16=5
-8क -2 फावटी गुणचें.
x=-11
समिकरणाच्या दोनूय कुशींतल्यान 16 वजा करचें.
x=-11,y=-8
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}