मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+2y=7,-x+y=1
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+2y=7
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-2y+7
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
-\left(-2y+7\right)+y=1
-x+y=1 ह्या दुस-या समिकरणांत x खातीर -2y+7 बदलपी घेवचो.
2y-7+y=1
-2y+7क -1 फावटी गुणचें.
3y-7=1
y कडेन 2y ची बेरीज करची.
3y=8
समिकरणाच्या दोनूय कुशींतल्यान 7 ची बेरीज करची.
y=\frac{8}{3}
दोनुय कुशींक 3 न भाग लावचो.
x=-2\times \frac{8}{3}+7
x=-2y+7 त y खातीर \frac{8}{3} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-\frac{16}{3}+7
\frac{8}{3}क -2 फावटी गुणचें.
x=\frac{5}{3}
-\frac{16}{3} कडेन 7 ची बेरीज करची.
x=\frac{5}{3},y=\frac{8}{3}
प्रणाली आतां सुटावी जाली.
x+2y=7,-x+y=1
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-1\right)}&-\frac{2}{1-2\left(-1\right)}\\-\frac{-1}{1-2\left(-1\right)}&\frac{1}{1-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 7-\frac{2}{3}\\\frac{1}{3}\times 7+\frac{1}{3}\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\\frac{8}{3}\end{matrix}\right)
अंकगणीत करचें.
x=\frac{5}{3},y=\frac{8}{3}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+2y=7,-x+y=1
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-x-2y=-7,-x+y=1
x आनी -x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
-x+x-2y-y=-7-1
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -x-2y=-7 तल्यान -x+y=1 वजा करचो.
-2y-y=-7-1
x कडेन -x ची बेरीज करची. अटी -x आनी x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-3y=-7-1
-y कडेन -2y ची बेरीज करची.
-3y=-8
-1 कडेन -7 ची बेरीज करची.
y=\frac{8}{3}
दोनुय कुशींक -3 न भाग लावचो.
-x+\frac{8}{3}=1
-x+y=1 त y खातीर \frac{8}{3} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
-x=-\frac{5}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{8}{3} वजा करचें.
x=\frac{5}{3}
दोनुय कुशींक -1 न भाग लावचो.
x=\frac{5}{3},y=\frac{8}{3}
प्रणाली आतां सुटावी जाली.