मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+2y=2,x-y=-4
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+2y=2
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-2y+2
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
-2y+2-y=-4
x-y=-4 ह्या दुस-या समिकरणांत x खातीर -2y+2 बदलपी घेवचो.
-3y+2=-4
-y कडेन -2y ची बेरीज करची.
-3y=-6
समिकरणाच्या दोनूय कुशींतल्यान 2 वजा करचें.
y=2
दोनुय कुशींक -3 न भाग लावचो.
x=-2\times 2+2
x=-2y+2 त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-4+2
2क -2 फावटी गुणचें.
x=-2
-4 कडेन 2 ची बेरीज करची.
x=-2,y=2
प्रणाली आतां सुटावी जाली.
x+2y=2,x-y=-4
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{2}{-1-2}\\-\frac{1}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 2+\frac{2}{3}\left(-4\right)\\\frac{1}{3}\times 2-\frac{1}{3}\left(-4\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
अंकगणीत करचें.
x=-2,y=2
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+2y=2,x-y=-4
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
x-x+2y+y=2+4
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून x+2y=2 तल्यान x-y=-4 वजा करचो.
2y+y=2+4
-x कडेन x ची बेरीज करची. अटी x आनी -x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
3y=2+4
y कडेन 2y ची बेरीज करची.
3y=6
4 कडेन 2 ची बेरीज करची.
y=2
दोनुय कुशींक 3 न भाग लावचो.
x-2=-4
x-y=-4 त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-2
समिकरणाच्या दोनूय कुशींतल्यान 2 ची बेरीज करची.
x=-2,y=2
प्रणाली आतां सुटावी जाली.