मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

5x-y=110,-x+9y=110
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
5x-y=110
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
5x=y+110
समिकरणाच्या दोनूय कुशींतल्यान y ची बेरीज करची.
x=\frac{1}{5}\left(y+110\right)
दोनुय कुशींक 5 न भाग लावचो.
x=\frac{1}{5}y+22
y+110क \frac{1}{5} फावटी गुणचें.
-\left(\frac{1}{5}y+22\right)+9y=110
-x+9y=110 ह्या दुस-या समिकरणांत x खातीर \frac{y}{5}+22 बदलपी घेवचो.
-\frac{1}{5}y-22+9y=110
\frac{y}{5}+22क -1 फावटी गुणचें.
\frac{44}{5}y-22=110
9y कडेन -\frac{y}{5} ची बेरीज करची.
\frac{44}{5}y=132
समिकरणाच्या दोनूय कुशींतल्यान 22 ची बेरीज करची.
y=15
\frac{44}{5} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{1}{5}\times 15+22
x=\frac{1}{5}y+22 त y खातीर 15 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=3+22
15क \frac{1}{5} फावटी गुणचें.
x=25
3 कडेन 22 ची बेरीज करची.
x=25,y=15
प्रणाली आतां सुटावी जाली.
5x-y=110,-x+9y=110
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}110\\110\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}110\\110\end{matrix}\right)
\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}110\\110\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}110\\110\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5\times 9-\left(-\left(-1\right)\right)}&-\frac{-1}{5\times 9-\left(-\left(-1\right)\right)}\\-\frac{-1}{5\times 9-\left(-\left(-1\right)\right)}&\frac{5}{5\times 9-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}110\\110\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{44}&\frac{1}{44}\\\frac{1}{44}&\frac{5}{44}\end{matrix}\right)\left(\begin{matrix}110\\110\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{44}\times 110+\frac{1}{44}\times 110\\\frac{1}{44}\times 110+\frac{5}{44}\times 110\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\15\end{matrix}\right)
अंकगणीत करचें.
x=25,y=15
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
5x-y=110,-x+9y=110
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-5x-\left(-y\right)=-110,5\left(-1\right)x+5\times 9y=5\times 110
5x आनी -x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 5 न गुणचें.
-5x+y=-110,-5x+45y=550
सोंपें करचें.
-5x+5x+y-45y=-110-550
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -5x+y=-110 तल्यान -5x+45y=550 वजा करचो.
y-45y=-110-550
5x कडेन -5x ची बेरीज करची. अटी -5x आनी 5x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-44y=-110-550
-45y कडेन y ची बेरीज करची.
-44y=-660
-550 कडेन -110 ची बेरीज करची.
y=15
दोनुय कुशींक -44 न भाग लावचो.
-x+9\times 15=110
-x+9y=110 त y खातीर 15 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
-x+135=110
15क 9 फावटी गुणचें.
-x=-25
समिकरणाच्या दोनूय कुशींतल्यान 135 वजा करचें.
x=25
दोनुय कुशींक -1 न भाग लावचो.
x=25,y=15
प्रणाली आतां सुटावी जाली.