मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

5x-2y=4,\frac{1}{2}x+\frac{1}{3}y=2
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
5x-2y=4
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
5x=2y+4
समिकरणाच्या दोनूय कुशींतल्यान 2y ची बेरीज करची.
x=\frac{1}{5}\left(2y+4\right)
दोनुय कुशींक 5 न भाग लावचो.
x=\frac{2}{5}y+\frac{4}{5}
4+2yक \frac{1}{5} फावटी गुणचें.
\frac{1}{2}\left(\frac{2}{5}y+\frac{4}{5}\right)+\frac{1}{3}y=2
\frac{1}{2}x+\frac{1}{3}y=2 ह्या दुस-या समिकरणांत x खातीर \frac{4+2y}{5} बदलपी घेवचो.
\frac{1}{5}y+\frac{2}{5}+\frac{1}{3}y=2
\frac{4+2y}{5}क \frac{1}{2} फावटी गुणचें.
\frac{8}{15}y+\frac{2}{5}=2
\frac{y}{3} कडेन \frac{y}{5} ची बेरीज करची.
\frac{8}{15}y=\frac{8}{5}
समिकरणाच्या दोनूय कुशींतल्यान \frac{2}{5} वजा करचें.
y=3
\frac{8}{15} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{2}{5}\times 3+\frac{4}{5}
x=\frac{2}{5}y+\frac{4}{5} त y खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{6+4}{5}
3क \frac{2}{5} फावटी गुणचें.
x=2
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{6}{5} क \frac{4}{5} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=2,y=3
प्रणाली आतां सुटावी जाली.
5x-2y=4,\frac{1}{2}x+\frac{1}{3}y=2
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}&-\frac{-2}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}\\-\frac{\frac{1}{2}}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}&\frac{5}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{3}{4}\\-\frac{3}{16}&\frac{15}{8}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 4+\frac{3}{4}\times 2\\-\frac{3}{16}\times 4+\frac{15}{8}\times 2\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
अंकगणीत करचें.
x=2,y=3
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
5x-2y=4,\frac{1}{2}x+\frac{1}{3}y=2
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
\frac{1}{2}\times 5x+\frac{1}{2}\left(-2\right)y=\frac{1}{2}\times 4,5\times \frac{1}{2}x+5\times \frac{1}{3}y=5\times 2
5x आनी \frac{x}{2} बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक \frac{1}{2} न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 5 न गुणचें.
\frac{5}{2}x-y=2,\frac{5}{2}x+\frac{5}{3}y=10
सोंपें करचें.
\frac{5}{2}x-\frac{5}{2}x-y-\frac{5}{3}y=2-10
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून \frac{5}{2}x-y=2 तल्यान \frac{5}{2}x+\frac{5}{3}y=10 वजा करचो.
-y-\frac{5}{3}y=2-10
-\frac{5x}{2} कडेन \frac{5x}{2} ची बेरीज करची. अटी \frac{5x}{2} आनी -\frac{5x}{2} रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-\frac{8}{3}y=2-10
-\frac{5y}{3} कडेन -y ची बेरीज करची.
-\frac{8}{3}y=-8
-10 कडेन 2 ची बेरीज करची.
y=3
-\frac{8}{3} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
\frac{1}{2}x+\frac{1}{3}\times 3=2
\frac{1}{2}x+\frac{1}{3}y=2 त y खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
\frac{1}{2}x+1=2
3क \frac{1}{3} फावटी गुणचें.
\frac{1}{2}x=1
समिकरणाच्या दोनूय कुशींतल्यान 1 वजा करचें.
x=2
दोनूय कुशीनीं 2 न गुणचें.
x=2,y=3
प्रणाली आतां सुटावी जाली.