मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

5x+y=7,3x-y=1
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
5x+y=7
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
5x=-y+7
समिकरणाच्या दोनूय कुशींतल्यान y वजा करचें.
x=\frac{1}{5}\left(-y+7\right)
दोनुय कुशींक 5 न भाग लावचो.
x=-\frac{1}{5}y+\frac{7}{5}
-y+7क \frac{1}{5} फावटी गुणचें.
3\left(-\frac{1}{5}y+\frac{7}{5}\right)-y=1
3x-y=1 ह्या दुस-या समिकरणांत x खातीर \frac{-y+7}{5} बदलपी घेवचो.
-\frac{3}{5}y+\frac{21}{5}-y=1
\frac{-y+7}{5}क 3 फावटी गुणचें.
-\frac{8}{5}y+\frac{21}{5}=1
-y कडेन -\frac{3y}{5} ची बेरीज करची.
-\frac{8}{5}y=-\frac{16}{5}
समिकरणाच्या दोनूय कुशींतल्यान \frac{21}{5} वजा करचें.
y=2
-\frac{8}{5} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{1}{5}\times 2+\frac{7}{5}
x=-\frac{1}{5}y+\frac{7}{5} त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{-2+7}{5}
2क -\frac{1}{5} फावटी गुणचें.
x=1
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{2}{5} क \frac{7}{5} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=1,y=2
प्रणाली आतां सुटावी जाली.
5x+y=7,3x-y=1
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}5&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}5&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
\left(\begin{matrix}5&1\\3&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-3}&-\frac{1}{5\left(-1\right)-3}\\-\frac{3}{5\left(-1\right)-3}&\frac{5}{5\left(-1\right)-3}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{3}{8}&-\frac{5}{8}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 7+\frac{1}{8}\\\frac{3}{8}\times 7-\frac{5}{8}\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
अंकगणीत करचें.
x=1,y=2
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
5x+y=7,3x-y=1
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3\times 5x+3y=3\times 7,5\times 3x+5\left(-1\right)y=5
5x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 5 न गुणचें.
15x+3y=21,15x-5y=5
सोंपें करचें.
15x-15x+3y+5y=21-5
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 15x+3y=21 तल्यान 15x-5y=5 वजा करचो.
3y+5y=21-5
-15x कडेन 15x ची बेरीज करची. अटी 15x आनी -15x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
8y=21-5
5y कडेन 3y ची बेरीज करची.
8y=16
-5 कडेन 21 ची बेरीज करची.
y=2
दोनुय कुशींक 8 न भाग लावचो.
3x-2=1
3x-y=1 त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x=3
समिकरणाच्या दोनूय कुशींतल्यान 2 ची बेरीज करची.
x=1
दोनुय कुशींक 3 न भाग लावचो.
x=1,y=2
प्रणाली आतां सुटावी जाली.