मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

5x+y=1,3x+y=-1
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
5x+y=1
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
5x=-y+1
समिकरणाच्या दोनूय कुशींतल्यान y वजा करचें.
x=\frac{1}{5}\left(-y+1\right)
दोनुय कुशींक 5 न भाग लावचो.
x=-\frac{1}{5}y+\frac{1}{5}
-y+1क \frac{1}{5} फावटी गुणचें.
3\left(-\frac{1}{5}y+\frac{1}{5}\right)+y=-1
3x+y=-1 ह्या दुस-या समिकरणांत x खातीर \frac{-y+1}{5} बदलपी घेवचो.
-\frac{3}{5}y+\frac{3}{5}+y=-1
\frac{-y+1}{5}क 3 फावटी गुणचें.
\frac{2}{5}y+\frac{3}{5}=-1
y कडेन -\frac{3y}{5} ची बेरीज करची.
\frac{2}{5}y=-\frac{8}{5}
समिकरणाच्या दोनूय कुशींतल्यान \frac{3}{5} वजा करचें.
y=-4
\frac{2}{5} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{1}{5}\left(-4\right)+\frac{1}{5}
x=-\frac{1}{5}y+\frac{1}{5} त y खातीर -4 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{4+1}{5}
-4क -\frac{1}{5} फावटी गुणचें.
x=1
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{4}{5} क \frac{1}{5} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=1,y=-4
प्रणाली आतां सुटावी जाली.
5x+y=1,3x+y=-1
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}5&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}5&1\\3&1\end{matrix}\right))\left(\begin{matrix}5&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
\left(\begin{matrix}5&1\\3&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-3}&-\frac{1}{5-3}\\-\frac{3}{5-3}&\frac{5}{5-3}\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-\frac{3}{2}&\frac{5}{2}\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}-\frac{1}{2}\left(-1\right)\\-\frac{3}{2}+\frac{5}{2}\left(-1\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
अंकगणीत करचें.
x=1,y=-4
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
5x+y=1,3x+y=-1
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
5x-3x+y-y=1+1
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 5x+y=1 तल्यान 3x+y=-1 वजा करचो.
5x-3x=1+1
-y कडेन y ची बेरीज करची. अटी y आनी -y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
2x=1+1
-3x कडेन 5x ची बेरीज करची.
2x=2
1 कडेन 1 ची बेरीज करची.
x=1
दोनुय कुशींक 2 न भाग लावचो.
3+y=-1
3x+y=-1 त x खातीर 1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=-4
समिकरणाच्या दोनूय कुशींतल्यान 3 वजा करचें.
x=1,y=-4
प्रणाली आतां सुटावी जाली.