\left\{ \begin{array} { l } { 5 = 3 k + b } \\ { - 9 = - 4 k + b } \end{array} \right.
k, b खातीर सोडोवचें
k=2
b=-1
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
3k+b=5
पयलें समिकरण विचारांत घेवचें. कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
-4k+b=-9
दुसरें समिकरण विचारांत घेवचें. कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
3k+b=5,-4k+b=-9
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3k+b=5
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक k वेगळावन k खातीर तें सोडोवचें.
3k=-b+5
समिकरणाच्या दोनूय कुशींतल्यान b वजा करचें.
k=\frac{1}{3}\left(-b+5\right)
दोनुय कुशींक 3 न भाग लावचो.
k=-\frac{1}{3}b+\frac{5}{3}
-b+5क \frac{1}{3} फावटी गुणचें.
-4\left(-\frac{1}{3}b+\frac{5}{3}\right)+b=-9
-4k+b=-9 ह्या दुस-या समिकरणांत k खातीर \frac{-b+5}{3} बदलपी घेवचो.
\frac{4}{3}b-\frac{20}{3}+b=-9
\frac{-b+5}{3}क -4 फावटी गुणचें.
\frac{7}{3}b-\frac{20}{3}=-9
b कडेन \frac{4b}{3} ची बेरीज करची.
\frac{7}{3}b=-\frac{7}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{20}{3} ची बेरीज करची.
b=-1
\frac{7}{3} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
k=-\frac{1}{3}\left(-1\right)+\frac{5}{3}
k=-\frac{1}{3}b+\frac{5}{3} त b खातीर -1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी k खातीर थेट सोडोवंक शकतात.
k=\frac{1+5}{3}
-1क -\frac{1}{3} फावटी गुणचें.
k=2
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{1}{3} क \frac{5}{3} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
k=2,b=-1
प्रणाली आतां सुटावी जाली.
3k+b=5
पयलें समिकरण विचारांत घेवचें. कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
-4k+b=-9
दुसरें समिकरण विचारांत घेवचें. कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
3k+b=5,-4k+b=-9
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}5\\-9\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-4\right)}&-\frac{1}{3-\left(-4\right)}\\-\frac{-4}{3-\left(-4\right)}&\frac{3}{3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{1}{7}\\\frac{4}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 5-\frac{1}{7}\left(-9\right)\\\frac{4}{7}\times 5+\frac{3}{7}\left(-9\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
अंकगणीत करचें.
k=2,b=-1
मॅट्रिक्स मुलतत्वां k आनी b काडचीं.
3k+b=5
पयलें समिकरण विचारांत घेवचें. कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
-4k+b=-9
दुसरें समिकरण विचारांत घेवचें. कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
3k+b=5,-4k+b=-9
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3k+4k+b-b=5+9
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 3k+b=5 तल्यान -4k+b=-9 वजा करचो.
3k+4k=5+9
-b कडेन b ची बेरीज करची. अटी b आनी -b रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
7k=5+9
4k कडेन 3k ची बेरीज करची.
7k=14
9 कडेन 5 ची बेरीज करची.
k=2
दोनुय कुशींक 7 न भाग लावचो.
-4\times 2+b=-9
-4k+b=-9 त k खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी b खातीर थेट सोडोवंक शकतात.
-8+b=-9
2क -4 फावटी गुणचें.
b=-1
समिकरणाच्या दोनूय कुशींतल्यान 8 ची बेरीज करची.
k=2,b=-1
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}