\left\{ \begin{array} { l } { 4 x + 2 y = 190 } \\ { x + y = 70 } \end{array} \right.
x, y खातीर सोडोवचें
x=25
y=45
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
4x+2y=190,x+y=70
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
4x+2y=190
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
4x=-2y+190
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
x=\frac{1}{4}\left(-2y+190\right)
दोनुय कुशींक 4 न भाग लावचो.
x=-\frac{1}{2}y+\frac{95}{2}
-2y+190क \frac{1}{4} फावटी गुणचें.
-\frac{1}{2}y+\frac{95}{2}+y=70
x+y=70 ह्या दुस-या समिकरणांत x खातीर \frac{-y+95}{2} बदलपी घेवचो.
\frac{1}{2}y+\frac{95}{2}=70
y कडेन -\frac{y}{2} ची बेरीज करची.
\frac{1}{2}y=\frac{45}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{95}{2} वजा करचें.
y=45
दोनूय कुशीनीं 2 न गुणचें.
x=-\frac{1}{2}\times 45+\frac{95}{2}
x=-\frac{1}{2}y+\frac{95}{2} त y खातीर 45 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{-45+95}{2}
45क -\frac{1}{2} फावटी गुणचें.
x=25
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{45}{2} क \frac{95}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=25,y=45
प्रणाली आतां सुटावी जाली.
4x+2y=190,x+y=70
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}4&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}190\\70\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}4&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}190\\70\end{matrix}\right)
\left(\begin{matrix}4&2\\1&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}190\\70\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}190\\70\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-2}&-\frac{2}{4-2}\\-\frac{1}{4-2}&\frac{4}{4-2}\end{matrix}\right)\left(\begin{matrix}190\\70\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-1\\-\frac{1}{2}&2\end{matrix}\right)\left(\begin{matrix}190\\70\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 190-70\\-\frac{1}{2}\times 190+2\times 70\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\45\end{matrix}\right)
अंकगणीत करचें.
x=25,y=45
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
4x+2y=190,x+y=70
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
4x+2y=190,4x+4y=4\times 70
4x आनी x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न गुणचें.
4x+2y=190,4x+4y=280
सोंपें करचें.
4x-4x+2y-4y=190-280
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 4x+2y=190 तल्यान 4x+4y=280 वजा करचो.
2y-4y=190-280
-4x कडेन 4x ची बेरीज करची. अटी 4x आनी -4x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-2y=190-280
-4y कडेन 2y ची बेरीज करची.
-2y=-90
-280 कडेन 190 ची बेरीज करची.
y=45
दोनुय कुशींक -2 न भाग लावचो.
x+45=70
x+y=70 त y खातीर 45 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=25
समिकरणाच्या दोनूय कुशींतल्यान 45 वजा करचें.
x=25,y=45
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}