मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

3x-5y=-16,2x-2y=-4
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3x-5y=-16
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
3x=5y-16
समिकरणाच्या दोनूय कुशींतल्यान 5y ची बेरीज करची.
x=\frac{1}{3}\left(5y-16\right)
दोनुय कुशींक 3 न भाग लावचो.
x=\frac{5}{3}y-\frac{16}{3}
5y-16क \frac{1}{3} फावटी गुणचें.
2\left(\frac{5}{3}y-\frac{16}{3}\right)-2y=-4
2x-2y=-4 ह्या दुस-या समिकरणांत x खातीर \frac{5y-16}{3} बदलपी घेवचो.
\frac{10}{3}y-\frac{32}{3}-2y=-4
\frac{5y-16}{3}क 2 फावटी गुणचें.
\frac{4}{3}y-\frac{32}{3}=-4
-2y कडेन \frac{10y}{3} ची बेरीज करची.
\frac{4}{3}y=\frac{20}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{32}{3} ची बेरीज करची.
y=5
\frac{4}{3} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{5}{3}\times 5-\frac{16}{3}
x=\frac{5}{3}y-\frac{16}{3} त y खातीर 5 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{25-16}{3}
5क \frac{5}{3} फावटी गुणचें.
x=3
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{25}{3} क -\frac{16}{3} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=3,y=5
प्रणाली आतां सुटावी जाली.
3x-5y=-16,2x-2y=-4
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\-4\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right))\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right))\left(\begin{matrix}-16\\-4\end{matrix}\right)
\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right))\left(\begin{matrix}-16\\-4\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-2\end{matrix}\right))\left(\begin{matrix}-16\\-4\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-5\times 2\right)}&-\frac{-5}{3\left(-2\right)-\left(-5\times 2\right)}\\-\frac{2}{3\left(-2\right)-\left(-5\times 2\right)}&\frac{3}{3\left(-2\right)-\left(-5\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-16\\-4\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{5}{4}\\-\frac{1}{2}&\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}-16\\-4\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-16\right)+\frac{5}{4}\left(-4\right)\\-\frac{1}{2}\left(-16\right)+\frac{3}{4}\left(-4\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
अंकगणीत करचें.
x=3,y=5
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
3x-5y=-16,2x-2y=-4
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
2\times 3x+2\left(-5\right)y=2\left(-16\right),3\times 2x+3\left(-2\right)y=3\left(-4\right)
3x आनी 2x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न गुणचें.
6x-10y=-32,6x-6y=-12
सोंपें करचें.
6x-6x-10y+6y=-32+12
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 6x-10y=-32 तल्यान 6x-6y=-12 वजा करचो.
-10y+6y=-32+12
-6x कडेन 6x ची बेरीज करची. अटी 6x आनी -6x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-4y=-32+12
6y कडेन -10y ची बेरीज करची.
-4y=-20
12 कडेन -32 ची बेरीज करची.
y=5
दोनुय कुशींक -4 न भाग लावचो.
2x-2\times 5=-4
2x-2y=-4 त y खातीर 5 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
2x-10=-4
5क -2 फावटी गुणचें.
2x=6
समिकरणाच्या दोनूय कुशींतल्यान 10 ची बेरीज करची.
x=3
दोनुय कुशींक 2 न भाग लावचो.
x=3,y=5
प्रणाली आतां सुटावी जाली.