मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

3x-2y=1,x+y=12
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3x-2y=1
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
3x=2y+1
समिकरणाच्या दोनूय कुशींतल्यान 2y ची बेरीज करची.
x=\frac{1}{3}\left(2y+1\right)
दोनुय कुशींक 3 न भाग लावचो.
x=\frac{2}{3}y+\frac{1}{3}
2y+1क \frac{1}{3} फावटी गुणचें.
\frac{2}{3}y+\frac{1}{3}+y=12
x+y=12 ह्या दुस-या समिकरणांत x खातीर \frac{2y+1}{3} बदलपी घेवचो.
\frac{5}{3}y+\frac{1}{3}=12
y कडेन \frac{2y}{3} ची बेरीज करची.
\frac{5}{3}y=\frac{35}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{1}{3} वजा करचें.
y=7
\frac{5}{3} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{2}{3}\times 7+\frac{1}{3}
x=\frac{2}{3}y+\frac{1}{3} त y खातीर 7 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{14+1}{3}
7क \frac{2}{3} फावटी गुणचें.
x=5
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{14}{3} क \frac{1}{3} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=5,y=7
प्रणाली आतां सुटावी जाली.
3x-2y=1,x+y=12
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\12\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\12\end{matrix}\right)
\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\12\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\12\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\right)}&-\frac{-2}{3-\left(-2\right)}\\-\frac{1}{3-\left(-2\right)}&\frac{3}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\12\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\-\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}1\\12\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}+\frac{2}{5}\times 12\\-\frac{1}{5}+\frac{3}{5}\times 12\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
अंकगणीत करचें.
x=5,y=7
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
3x-2y=1,x+y=12
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3x-2y=1,3x+3y=3\times 12
3x आनी x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न गुणचें.
3x-2y=1,3x+3y=36
सोंपें करचें.
3x-3x-2y-3y=1-36
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 3x-2y=1 तल्यान 3x+3y=36 वजा करचो.
-2y-3y=1-36
-3x कडेन 3x ची बेरीज करची. अटी 3x आनी -3x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-5y=1-36
-3y कडेन -2y ची बेरीज करची.
-5y=-35
-36 कडेन 1 ची बेरीज करची.
y=7
दोनुय कुशींक -5 न भाग लावचो.
x+7=12
x+y=12 त y खातीर 7 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=5
समिकरणाच्या दोनूय कुशींतल्यान 7 वजा करचें.
x=5,y=7
प्रणाली आतां सुटावी जाली.