\left\{ \begin{array} { l } { 3 x = - 4 y } \\ { 5 x - 6 y = 38 } \end{array} \right.
x, y खातीर सोडोवचें
x=4
y=-3
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
3x+4y=0
पयलें समिकरण विचारांत घेवचें. दोनूय वटांनी 4y जोडचे.
3x+4y=0,5x-6y=38
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3x+4y=0
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
3x=-4y
समिकरणाच्या दोनूय कुशींतल्यान 4y वजा करचें.
x=\frac{1}{3}\left(-4\right)y
दोनुय कुशींक 3 न भाग लावचो.
x=-\frac{4}{3}y
-4yक \frac{1}{3} फावटी गुणचें.
5\left(-\frac{4}{3}\right)y-6y=38
5x-6y=38 ह्या दुस-या समिकरणांत x खातीर -\frac{4y}{3} बदलपी घेवचो.
-\frac{20}{3}y-6y=38
-\frac{4y}{3}क 5 फावटी गुणचें.
-\frac{38}{3}y=38
-6y कडेन -\frac{20y}{3} ची बेरीज करची.
y=-3
-\frac{38}{3} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{4}{3}\left(-3\right)
x=-\frac{4}{3}y त y खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=4
-3क -\frac{4}{3} फावटी गुणचें.
x=4,y=-3
प्रणाली आतां सुटावी जाली.
3x+4y=0
पयलें समिकरण विचारांत घेवचें. दोनूय वटांनी 4y जोडचे.
3x+4y=0,5x-6y=38
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&4\\5&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\38\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&4\\5&-6\end{matrix}\right))\left(\begin{matrix}3&4\\5&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&-6\end{matrix}\right))\left(\begin{matrix}0\\38\end{matrix}\right)
\left(\begin{matrix}3&4\\5&-6\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&-6\end{matrix}\right))\left(\begin{matrix}0\\38\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&-6\end{matrix}\right))\left(\begin{matrix}0\\38\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{3\left(-6\right)-4\times 5}&-\frac{4}{3\left(-6\right)-4\times 5}\\-\frac{5}{3\left(-6\right)-4\times 5}&\frac{3}{3\left(-6\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}0\\38\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}&\frac{2}{19}\\\frac{5}{38}&-\frac{3}{38}\end{matrix}\right)\left(\begin{matrix}0\\38\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\times 38\\-\frac{3}{38}\times 38\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
अंकगणीत करचें.
x=4,y=-3
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
3x+4y=0
पयलें समिकरण विचारांत घेवचें. दोनूय वटांनी 4y जोडचे.
3x+4y=0,5x-6y=38
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
5\times 3x+5\times 4y=0,3\times 5x+3\left(-6\right)y=3\times 38
3x आनी 5x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 5 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न गुणचें.
15x+20y=0,15x-18y=114
सोंपें करचें.
15x-15x+20y+18y=-114
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 15x+20y=0 तल्यान 15x-18y=114 वजा करचो.
20y+18y=-114
-15x कडेन 15x ची बेरीज करची. अटी 15x आनी -15x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
38y=-114
18y कडेन 20y ची बेरीज करची.
y=-3
दोनुय कुशींक 38 न भाग लावचो.
5x-6\left(-3\right)=38
5x-6y=38 त y खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
5x+18=38
-3क -6 फावटी गुणचें.
5x=20
समिकरणाच्या दोनूय कुशींतल्यान 18 वजा करचें.
x=4
दोनुय कुशींक 5 न भाग लावचो.
x=4,y=-3
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}