मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

2x-3y=5,4x-5y=7
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
2x-3y=5
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
2x=3y+5
समिकरणाच्या दोनूय कुशींतल्यान 3y ची बेरीज करची.
x=\frac{1}{2}\left(3y+5\right)
दोनुय कुशींक 2 न भाग लावचो.
x=\frac{3}{2}y+\frac{5}{2}
3y+5क \frac{1}{2} फावटी गुणचें.
4\left(\frac{3}{2}y+\frac{5}{2}\right)-5y=7
4x-5y=7 ह्या दुस-या समिकरणांत x खातीर \frac{3y+5}{2} बदलपी घेवचो.
6y+10-5y=7
\frac{3y+5}{2}क 4 फावटी गुणचें.
y+10=7
-5y कडेन 6y ची बेरीज करची.
y=-3
समिकरणाच्या दोनूय कुशींतल्यान 10 वजा करचें.
x=\frac{3}{2}\left(-3\right)+\frac{5}{2}
x=\frac{3}{2}y+\frac{5}{2} त y खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{-9+5}{2}
-3क \frac{3}{2} फावटी गुणचें.
x=-2
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{9}{2} क \frac{5}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=-2,y=-3
प्रणाली आतां सुटावी जाली.
2x-3y=5,4x-5y=7
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}2&-3\\4&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}2&-3\\4&-5\end{matrix}\right))\left(\begin{matrix}2&-3\\4&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&-5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}2&-3\\4&-5\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&-5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&-5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-\left(-3\times 4\right)}&-\frac{-3}{2\left(-5\right)-\left(-3\times 4\right)}\\-\frac{4}{2\left(-5\right)-\left(-3\times 4\right)}&\frac{2}{2\left(-5\right)-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}&\frac{3}{2}\\-2&1\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\times 5+\frac{3}{2}\times 7\\-2\times 5+7\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-3\end{matrix}\right)
अंकगणीत करचें.
x=-2,y=-3
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
2x-3y=5,4x-5y=7
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
4\times 2x+4\left(-3\right)y=4\times 5,2\times 4x+2\left(-5\right)y=2\times 7
2x आनी 4x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न गुणचें.
8x-12y=20,8x-10y=14
सोंपें करचें.
8x-8x-12y+10y=20-14
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 8x-12y=20 तल्यान 8x-10y=14 वजा करचो.
-12y+10y=20-14
-8x कडेन 8x ची बेरीज करची. अटी 8x आनी -8x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-2y=20-14
10y कडेन -12y ची बेरीज करची.
-2y=6
-14 कडेन 20 ची बेरीज करची.
y=-3
दोनुय कुशींक -2 न भाग लावचो.
4x-5\left(-3\right)=7
4x-5y=7 त y खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
4x+15=7
-3क -5 फावटी गुणचें.
4x=-8
समिकरणाच्या दोनूय कुशींतल्यान 15 वजा करचें.
x=-2
दोनुय कुशींक 4 न भाग लावचो.
x=-2,y=-3
प्रणाली आतां सुटावी जाली.