\left\{ \begin{array} { l } { 125 x + 110 y = 6100 } \\ { x + y = 50 } \end{array} \right.
x, y खातीर सोडोवचें
x=40
y=10
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
125x+110y=6100,x+y=50
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
125x+110y=6100
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
125x=-110y+6100
समिकरणाच्या दोनूय कुशींतल्यान 110y वजा करचें.
x=\frac{1}{125}\left(-110y+6100\right)
दोनुय कुशींक 125 न भाग लावचो.
x=-\frac{22}{25}y+\frac{244}{5}
-110y+6100क \frac{1}{125} फावटी गुणचें.
-\frac{22}{25}y+\frac{244}{5}+y=50
x+y=50 ह्या दुस-या समिकरणांत x खातीर -\frac{22y}{25}+\frac{244}{5} बदलपी घेवचो.
\frac{3}{25}y+\frac{244}{5}=50
y कडेन -\frac{22y}{25} ची बेरीज करची.
\frac{3}{25}y=\frac{6}{5}
समिकरणाच्या दोनूय कुशींतल्यान \frac{244}{5} वजा करचें.
y=10
\frac{3}{25} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{22}{25}\times 10+\frac{244}{5}
x=-\frac{22}{25}y+\frac{244}{5} त y खातीर 10 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{-44+244}{5}
10क -\frac{22}{25} फावटी गुणचें.
x=40
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{44}{5} क \frac{244}{5} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=40,y=10
प्रणाली आतां सुटावी जाली.
125x+110y=6100,x+y=50
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}125&110\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6100\\50\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}125&110\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}6100\\50\end{matrix}\right)
\left(\begin{matrix}125&110\\1&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}6100\\50\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}6100\\50\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{125-110}&-\frac{110}{125-110}\\-\frac{1}{125-110}&\frac{125}{125-110}\end{matrix}\right)\left(\begin{matrix}6100\\50\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&-\frac{22}{3}\\-\frac{1}{15}&\frac{25}{3}\end{matrix}\right)\left(\begin{matrix}6100\\50\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 6100-\frac{22}{3}\times 50\\-\frac{1}{15}\times 6100+\frac{25}{3}\times 50\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\10\end{matrix}\right)
अंकगणीत करचें.
x=40,y=10
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
125x+110y=6100,x+y=50
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
125x+110y=6100,125x+125y=125\times 50
125x आनी x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 125 न गुणचें.
125x+110y=6100,125x+125y=6250
सोंपें करचें.
125x-125x+110y-125y=6100-6250
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 125x+110y=6100 तल्यान 125x+125y=6250 वजा करचो.
110y-125y=6100-6250
-125x कडेन 125x ची बेरीज करची. अटी 125x आनी -125x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-15y=6100-6250
-125y कडेन 110y ची बेरीज करची.
-15y=-150
-6250 कडेन 6100 ची बेरीज करची.
y=10
दोनुय कुशींक -15 न भाग लावचो.
x+10=50
x+y=50 त y खातीर 10 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=40
समिकरणाच्या दोनूय कुशींतल्यान 10 वजा करचें.
x=40,y=10
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}