\left\{ \begin{array} { l } { \frac { 3 } { 2 } x + \frac { 1 } { 3 } y = 1 } \\ { \frac { x } { 4 } - \frac { 1 } { 6 } y = - \frac { 3 } { 2 } } \end{array} \right.
x, y खातीर सोडोवचें
x=-1
y = \frac{15}{2} = 7\frac{1}{2} = 7.5
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{3}{2}x+\frac{1}{3}y=1,\frac{1}{4}x-\frac{1}{6}y=-\frac{3}{2}
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
\frac{3}{2}x+\frac{1}{3}y=1
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
\frac{3}{2}x=-\frac{1}{3}y+1
समिकरणाच्या दोनूय कुशींतल्यान \frac{y}{3} वजा करचें.
x=\frac{2}{3}\left(-\frac{1}{3}y+1\right)
\frac{3}{2} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{2}{9}y+\frac{2}{3}
-\frac{y}{3}+1क \frac{2}{3} फावटी गुणचें.
\frac{1}{4}\left(-\frac{2}{9}y+\frac{2}{3}\right)-\frac{1}{6}y=-\frac{3}{2}
\frac{1}{4}x-\frac{1}{6}y=-\frac{3}{2} ह्या दुस-या समिकरणांत x खातीर -\frac{2y}{9}+\frac{2}{3} बदलपी घेवचो.
-\frac{1}{18}y+\frac{1}{6}-\frac{1}{6}y=-\frac{3}{2}
-\frac{2y}{9}+\frac{2}{3}क \frac{1}{4} फावटी गुणचें.
-\frac{2}{9}y+\frac{1}{6}=-\frac{3}{2}
-\frac{y}{6} कडेन -\frac{y}{18} ची बेरीज करची.
-\frac{2}{9}y=-\frac{5}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{1}{6} वजा करचें.
y=\frac{15}{2}
-\frac{2}{9} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{2}{9}\times \frac{15}{2}+\frac{2}{3}
x=-\frac{2}{9}y+\frac{2}{3} त y खातीर \frac{15}{2} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{-5+2}{3}
गणक वेळा गणकाक आनी भाजक वेळा भाजकाक गुणून \frac{15}{2} क -\frac{2}{9} फावटी गुणचें. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=-1
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{5}{3} क \frac{2}{3} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=-1,y=\frac{15}{2}
प्रणाली आतां सुटावी जाली.
\frac{3}{2}x+\frac{1}{3}y=1,\frac{1}{4}x-\frac{1}{6}y=-\frac{3}{2}
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{6}}{\frac{3}{2}\left(-\frac{1}{6}\right)-\frac{1}{3}\times \frac{1}{4}}&-\frac{\frac{1}{3}}{\frac{3}{2}\left(-\frac{1}{6}\right)-\frac{1}{3}\times \frac{1}{4}}\\-\frac{\frac{1}{4}}{\frac{3}{2}\left(-\frac{1}{6}\right)-\frac{1}{3}\times \frac{1}{4}}&\frac{\frac{3}{2}}{\frac{3}{2}\left(-\frac{1}{6}\right)-\frac{1}{3}\times \frac{1}{4}}\end{matrix}\right)\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&1\\\frac{3}{4}&-\frac{9}{2}\end{matrix}\right)\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1-3}{2}\\\frac{3}{4}-\frac{9}{2}\left(-\frac{3}{2}\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\\frac{15}{2}\end{matrix}\right)
अंकगणीत करचें.
x=-1,y=\frac{15}{2}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
\frac{3}{2}x+\frac{1}{3}y=1,\frac{1}{4}x-\frac{1}{6}y=-\frac{3}{2}
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
\frac{1}{4}\times \frac{3}{2}x+\frac{1}{4}\times \frac{1}{3}y=\frac{1}{4},\frac{3}{2}\times \frac{1}{4}x+\frac{3}{2}\left(-\frac{1}{6}\right)y=\frac{3}{2}\left(-\frac{3}{2}\right)
\frac{3x}{2} आनी \frac{x}{4} बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक \frac{1}{4} न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक \frac{3}{2} न गुणचें.
\frac{3}{8}x+\frac{1}{12}y=\frac{1}{4},\frac{3}{8}x-\frac{1}{4}y=-\frac{9}{4}
सोंपें करचें.
\frac{3}{8}x-\frac{3}{8}x+\frac{1}{12}y+\frac{1}{4}y=\frac{1+9}{4}
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून \frac{3}{8}x+\frac{1}{12}y=\frac{1}{4} तल्यान \frac{3}{8}x-\frac{1}{4}y=-\frac{9}{4} वजा करचो.
\frac{1}{12}y+\frac{1}{4}y=\frac{1+9}{4}
-\frac{3x}{8} कडेन \frac{3x}{8} ची बेरीज करची. अटी \frac{3x}{8} आनी -\frac{3x}{8} रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
\frac{1}{3}y=\frac{1+9}{4}
\frac{y}{4} कडेन \frac{y}{12} ची बेरीज करची.
\frac{1}{3}y=\frac{5}{2}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{9}{4} क \frac{1}{4} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
y=\frac{15}{2}
दोनूय कुशीनीं 3 न गुणचें.
\frac{1}{4}x-\frac{1}{6}\times \frac{15}{2}=-\frac{3}{2}
\frac{1}{4}x-\frac{1}{6}y=-\frac{3}{2} त y खातीर \frac{15}{2} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
\frac{1}{4}x-\frac{5}{4}=-\frac{3}{2}
गणक वेळा गणकाक आनी भाजक वेळा भाजकाक गुणून \frac{15}{2} क -\frac{1}{6} फावटी गुणचें. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
\frac{1}{4}x=-\frac{1}{4}
समिकरणाच्या दोनूय कुशींतल्यान \frac{5}{4} ची बेरीज करची.
x=-1
दोनूय कुशीनीं 4 न गुणचें.
x=-1,y=\frac{15}{2}
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}