\left\{ \begin{array} { c } { x - 4 y = - 13 } \\ { 6 x + 4 y = 6 } \end{array} \right.
x, y खातीर सोडोवचें
x=-1
y=3
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
x-4y=-13,6x+4y=6
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x-4y=-13
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=4y-13
समिकरणाच्या दोनूय कुशींतल्यान 4y ची बेरीज करची.
6\left(4y-13\right)+4y=6
6x+4y=6 ह्या दुस-या समिकरणांत x खातीर 4y-13 बदलपी घेवचो.
24y-78+4y=6
4y-13क 6 फावटी गुणचें.
28y-78=6
4y कडेन 24y ची बेरीज करची.
28y=84
समिकरणाच्या दोनूय कुशींतल्यान 78 ची बेरीज करची.
y=3
दोनुय कुशींक 28 न भाग लावचो.
x=4\times 3-13
x=4y-13 त y खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=12-13
3क 4 फावटी गुणचें.
x=-1
12 कडेन -13 ची बेरीज करची.
x=-1,y=3
प्रणाली आतां सुटावी जाली.
x-4y=-13,6x+4y=6
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-4\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-13\\6\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}1&-4\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}-13\\6\end{matrix}\right)
\left(\begin{matrix}1&-4\\6&4\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}-13\\6\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}-13\\6\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-4\times 6\right)}&-\frac{-4}{4-\left(-4\times 6\right)}\\-\frac{6}{4-\left(-4\times 6\right)}&\frac{1}{4-\left(-4\times 6\right)}\end{matrix}\right)\left(\begin{matrix}-13\\6\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{1}{7}\\-\frac{3}{14}&\frac{1}{28}\end{matrix}\right)\left(\begin{matrix}-13\\6\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-13\right)+\frac{1}{7}\times 6\\-\frac{3}{14}\left(-13\right)+\frac{1}{28}\times 6\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
अंकगणीत करचें.
x=-1,y=3
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x-4y=-13,6x+4y=6
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
6x+6\left(-4\right)y=6\left(-13\right),6x+4y=6
x आनी 6x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 6 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
6x-24y=-78,6x+4y=6
सोंपें करचें.
6x-6x-24y-4y=-78-6
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 6x-24y=-78 तल्यान 6x+4y=6 वजा करचो.
-24y-4y=-78-6
-6x कडेन 6x ची बेरीज करची. अटी 6x आनी -6x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-28y=-78-6
-4y कडेन -24y ची बेरीज करची.
-28y=-84
-6 कडेन -78 ची बेरीज करची.
y=3
दोनुय कुशींक -28 न भाग लावचो.
6x+4\times 3=6
6x+4y=6 त y खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
6x+12=6
3क 4 फावटी गुणचें.
6x=-6
समिकरणाच्या दोनूय कुशींतल्यान 12 वजा करचें.
x=-1
दोनुय कुशींक 6 न भाग लावचो.
x=-1,y=3
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}