मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\int x^{2}-6x+5\mathrm{d}x
अस्पश्ट इंटिग्रल पयलो मेजचो.
\int x^{2}\mathrm{d}x+\int -6x\mathrm{d}x+\int 5\mathrm{d}x
संज्ञे वरवीं संज्ञा बेरीज इंटिग्रेट करची.
\int x^{2}\mathrm{d}x-6\int x\mathrm{d}x+\int 5\mathrm{d}x
संज्ञेच्या दरेकांत कॉन्स्टंट फॅक्टर आवट करचो.
\frac{x^{3}}{3}-6\int x\mathrm{d}x+\int 5\mathrm{d}x
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{3}}{3} वांगडा \int x^{2}\mathrm{d}x बदलचे.
\frac{x^{3}}{3}-3x^{2}+\int 5\mathrm{d}x
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{2}}{2} वांगडा \int x\mathrm{d}x बदलचे. \frac{x^{2}}{2}क -6 फावटी गुणचें.
\frac{x^{3}}{3}-3x^{2}+5x
सामान्य इंटिग्रल्स नेम \int a\mathrm{d}x=ax वापरून 5 चो इंटिग्रल सोदचो.
\frac{1^{3}}{3}-3\times 1^{2}+5\times 1-\left(\frac{\left(-5\right)^{3}}{3}-3\left(-5\right)^{2}+5\left(-5\right)\right)
स्पश्ट इंटिग्रल म्हणल्यार इंटिग्रेशनाच्या वयल्या मर्यादीचेर मेजिल्ल्या एक्सप्रेशनाचो एण्टीडेरिवेटिव वजा इंटिग्रेशनाच्या सकयल्या मर्यादीचेर मेजिल्ल्या एक्सप्रेशनाचो एण्टीडेरिवेटिव आसा.
144
सोंपें करचें.