मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\int -\frac{x^{3}}{2}+3x-2\mathrm{d}x
अस्पश्ट इंटिग्रल पयलो मेजचो.
\int -\frac{x^{3}}{2}\mathrm{d}x+\int 3x\mathrm{d}x+\int -2\mathrm{d}x
संज्ञे वरवीं संज्ञा बेरीज इंटिग्रेट करची.
-\frac{\int x^{3}\mathrm{d}x}{2}+3\int x\mathrm{d}x+\int -2\mathrm{d}x
संज्ञेच्या दरेकांत कॉन्स्टंट फॅक्टर आवट करचो.
-\frac{x^{4}}{8}+3\int x\mathrm{d}x+\int -2\mathrm{d}x
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{4}}{4} वांगडा \int x^{3}\mathrm{d}x बदलचे. \frac{x^{4}}{4}क -\frac{1}{2} फावटी गुणचें.
-\frac{x^{4}}{8}+\frac{3x^{2}}{2}+\int -2\mathrm{d}x
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{2}}{2} वांगडा \int x\mathrm{d}x बदलचे. \frac{x^{2}}{2}क 3 फावटी गुणचें.
-\frac{x^{4}}{8}+\frac{3x^{2}}{2}-2x
सामान्य इंटिग्रल्स नेम \int a\mathrm{d}x=ax वापरून -2 चो इंटिग्रल सोदचो.
-\frac{1}{8}\times \left(0\times 73\right)^{4}+\frac{3}{2}\times \left(0\times 73\right)^{2}-2\times 0\times 73-\left(-\frac{\left(-1\right)^{4}}{8}+\frac{3}{2}\left(-1\right)^{2}-2\left(-1\right)\right)
स्पश्ट इंटिग्रल म्हणल्यार इंटिग्रेशनाच्या वयल्या मर्यादीचेर मेजिल्ल्या एक्सप्रेशनाचो एण्टीडेरिवेटिव वजा इंटिग्रेशनाच्या सकयल्या मर्यादीचेर मेजिल्ल्या एक्सप्रेशनाचो एण्टीडेरिवेटिव आसा.
-\frac{27}{8}
सोंपें करचें.