मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\int x^{4}-\frac{x^{2}}{2}\mathrm{d}x
अस्पश्ट इंटिग्रल पयलो मेजचो.
\int x^{4}\mathrm{d}x+\int -\frac{x^{2}}{2}\mathrm{d}x
संज्ञे वरवीं संज्ञा बेरीज इंटिग्रेट करची.
\int x^{4}\mathrm{d}x-\frac{\int x^{2}\mathrm{d}x}{2}
संज्ञेच्या दरेकांत कॉन्स्टंट फॅक्टर आवट करचो.
\frac{x^{5}}{5}-\frac{\int x^{2}\mathrm{d}x}{2}
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{5}}{5} वांगडा \int x^{4}\mathrm{d}x बदलचे.
\frac{x^{5}}{5}-\frac{x^{3}}{6}
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{3}}{3} वांगडा \int x^{2}\mathrm{d}x बदलचे. \frac{x^{3}}{3}क -\frac{1}{2} फावटी गुणचें.
\frac{1^{5}}{5}-\frac{1^{3}}{6}-\left(\frac{1}{5}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{5}-\frac{1}{6}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{3}\right)
स्पश्ट इंटिग्रल म्हणल्यार इंटिग्रेशनाच्या वयल्या मर्यादीचेर मेजिल्ल्या एक्सप्रेशनाचो एण्टीडेरिवेटिव वजा इंटिग्रेशनाच्या सकयल्या मर्यादीचेर मेजिल्ल्या एक्सप्रेशनाचो एण्टीडेरिवेटिव आसा.
\frac{1}{30}+\frac{\sqrt{2}}{60}
सोंपें करचें.