मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
w.r.t. x चो फरक काडचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
बायनोमियल प्रमेयाचो वापर करून \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} विस्तारावचें \left(x^{2}+2\right)^{3}.
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 6 मेळोवंक 2 तल्यान 3 गुणचो.
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
संज्ञे वरवीं संज्ञा बेरीज इंटिग्रेट करची.
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
संज्ञेच्या दरेकांत कॉन्स्टंट फॅक्टर आवट करचो.
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{7}}{7} वांगडा \int x^{6}\mathrm{d}x बदलचे.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{5}}{5} वांगडा \int x^{4}\mathrm{d}x बदलचे. \frac{x^{5}}{5}क 6 फावटी गुणचें.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{3}}{3} वांगडा \int x^{2}\mathrm{d}x बदलचे. \frac{x^{3}}{3}क 12 फावटी गुणचें.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
सामान्य इंटिग्रल्स नेम \int a\mathrm{d}x=ax वापरून 8 चो इंटिग्रल सोदचो.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
सोंपें करचें.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
जर F\left(x\right) हो f\left(x\right) चो एण्टीडेरिवेटीव आसल्यार, मागीर f\left(x\right) च्या सगळ्या एण्टीडेरिवेटीवांचो संच F\left(x\right)+C प्रमाणें दितात. ताकालागून निकालाक C\in \mathrm{R} इंटीग्रेशनाचो कॉन्स्टंट जमा करचो.