मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
w.r.t. x चो फरक काडचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\int 27x^{3}+54x^{2}+36x+8\mathrm{d}x
बायनोमियल प्रमेयाचो वापर करून \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} विस्तारावचें \left(3x+2\right)^{3}.
\int 27x^{3}\mathrm{d}x+\int 54x^{2}\mathrm{d}x+\int 36x\mathrm{d}x+\int 8\mathrm{d}x
संज्ञे वरवीं संज्ञा बेरीज इंटिग्रेट करची.
27\int x^{3}\mathrm{d}x+54\int x^{2}\mathrm{d}x+36\int x\mathrm{d}x+\int 8\mathrm{d}x
संज्ञेच्या दरेकांत कॉन्स्टंट फॅक्टर आवट करचो.
\frac{27x^{4}}{4}+54\int x^{2}\mathrm{d}x+36\int x\mathrm{d}x+\int 8\mathrm{d}x
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{4}}{4} वांगडा \int x^{3}\mathrm{d}x बदलचे. \frac{x^{4}}{4}क 27 फावटी गुणचें.
\frac{27x^{4}}{4}+18x^{3}+36\int x\mathrm{d}x+\int 8\mathrm{d}x
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{3}}{3} वांगडा \int x^{2}\mathrm{d}x बदलचे. \frac{x^{3}}{3}क 54 फावटी गुणचें.
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+\int 8\mathrm{d}x
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{2}}{2} वांगडा \int x\mathrm{d}x बदलचे. \frac{x^{2}}{2}क 36 फावटी गुणचें.
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+8x
सामान्य इंटिग्रल्स नेम \int a\mathrm{d}x=ax वापरून 8 चो इंटिग्रल सोदचो.
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+8x+С
जर F\left(x\right) हो f\left(x\right) चो एण्टीडेरिवेटीव आसल्यार, मागीर f\left(x\right) च्या सगळ्या एण्टीडेरिवेटीवांचो संच F\left(x\right)+C प्रमाणें दितात. ताकालागून निकालाक C\in \mathrm{R} इंटीग्रेशनाचो कॉन्स्टंट जमा करचो.