मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
w.r.t. x चो फरक काडचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{\left(x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}-1)-\left(3x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-3)}{\left(x^{1}-3\right)^{2}}
खंयच्याय दोन फरकांच्या कार्यां खातीर, दोन कार्यांच्या गुणकाराचो व्यत्पन्न हो गणकाच्या व्यत्पन्नाच्या भाजक पटीन आसा, जो भाजकाच्या व्यत्पन्नाच्या गणक पटीन वजा करचो, सगळे भाजकाच्या वर्गाकडेन विभागचें.
\frac{\left(x^{1}-3\right)\times 2\times 3x^{2-1}-\left(3x^{2}-1\right)x^{1-1}}{\left(x^{1}-3\right)^{2}}
पोलिनोमियलाचें व्यत्पन्न हें तांच्या संज्ञांच्या व्यत्पन्नाची बेरीज आसता. खंयच्याय थीर संख्येचें व्यत्पन्न 0 आसता. हाचें व्यत्पन्न ax^{n} हें nax^{n-1} आसा.
\frac{\left(x^{1}-3\right)\times 6x^{1}-\left(3x^{2}-1\right)x^{0}}{\left(x^{1}-3\right)^{2}}
अंकगणीत करचें.
\frac{x^{1}\times 6x^{1}-3\times 6x^{1}-\left(3x^{2}x^{0}-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
विभाजक विशम वापरून विस्तार करचो.
\frac{6x^{1+1}-3\times 6x^{1}-\left(3x^{2}-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
समान बेझीचे पॉवर गुणूंक, तांच्या पुरकांची बेरीज करची.
\frac{6x^{2}-18x^{1}-\left(3x^{2}-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
अंकगणीत करचें.
\frac{6x^{2}-18x^{1}-3x^{2}-\left(-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
अनावश्यक कौंस काडचे.
\frac{\left(6-3\right)x^{2}-18x^{1}-\left(-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
समान संज्ञा एकठांय करच्यो.
\frac{3x^{2}-18x^{1}-\left(-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
6 तल्यान 3 वजा करची.
\frac{3x^{2}-18x-\left(-x^{0}\right)}{\left(x-3\right)^{2}}
t खंयच्याय शब्दा खातीर, t^{1}=t.
\frac{3x^{2}-18x-\left(-1\right)}{\left(x-3\right)^{2}}
0 सोडून t खंयच्याय शब्दा खातीर, t^{0}=1.