मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
w.r.t. x चो फरक काडचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}+1)-\left(x^{3}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
खंयच्याय दोन फरकांच्या कार्यां खातीर, दोन कार्यांच्या गुणकाराचो व्यत्पन्न हो गणकाच्या व्यत्पन्नाच्या भाजक पटीन आसा, जो भाजकाच्या व्यत्पन्नाच्या गणक पटीन वजा करचो, सगळे भाजकाच्या वर्गाकडेन विभागचें.
\frac{\left(x^{2}-x^{1}-2\right)\times 3x^{3-1}-\left(x^{3}+1\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
पोलिनोमियलाचें व्यत्पन्न हें तांच्या संज्ञांच्या व्यत्पन्नाची बेरीज आसता. खंयच्याय थीर संख्येचें व्यत्पन्न 0 आसता. हाचें व्यत्पन्न ax^{n} हें nax^{n-1} आसा.
\frac{\left(x^{2}-x^{1}-2\right)\times 3x^{2}-\left(x^{3}+1\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
सोंपें करचें.
\frac{x^{2}\times 3x^{2}-x^{1}\times 3x^{2}-2\times 3x^{2}-\left(x^{3}+1\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
3x^{2}क x^{2}-x^{1}-2 फावटी गुणचें.
\frac{x^{2}\times 3x^{2}-x^{1}\times 3x^{2}-2\times 3x^{2}-\left(x^{3}\times 2x^{1}+x^{3}\left(-1\right)x^{0}+2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
2x^{1}-x^{0}क x^{3}+1 फावटी गुणचें.
\frac{3x^{2+2}-3x^{1+2}-2\times 3x^{2}-\left(2x^{3+1}-x^{3}+2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
समान बेझीचे पॉवर गुणूंक, तांच्या पुरकांची बेरीज करची.
\frac{3x^{4}-3x^{3}-6x^{2}-\left(2x^{4}-x^{3}+2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
सोंपें करचें.
\frac{x^{4}-2x^{3}-6x^{2}-2x^{1}-\left(-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
समान संज्ञा एकठांय करच्यो.
\frac{x^{4}-2x^{3}-6x^{2}-2x-\left(-x^{0}\right)}{\left(x^{2}-x-2\right)^{2}}
t खंयच्याय शब्दा खातीर, t^{1}=t.
\frac{x^{4}-2x^{3}-6x^{2}-2x-\left(-1\right)}{\left(x^{2}-x-2\right)^{2}}
0 सोडून t खंयच्याय शब्दा खातीर, t^{0}=1.