मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
w.r.t. x चो फरक काडचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}})
\frac{x^{2}-x}{x^{3}-x^{2}-x+1} आदींच फॅक्टर्ड नाशिल्लें ऍक्सप्रेशन फॅक्ट करचें.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x-1\right)\left(x+1\right)})
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय x-1 रद्द करचो.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{x^{2}-1})
विचारांत घेयात \left(x-1\right)\left(x+1\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 वर्गमूळ.
\frac{\left(x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-1)}{\left(x^{2}-1\right)^{2}}
खंयच्याय दोन फरकांच्या कार्यां खातीर, दोन कार्यांच्या गुणकाराचो व्यत्पन्न हो गणकाच्या व्यत्पन्नाच्या भाजक पटीन आसा, जो भाजकाच्या व्यत्पन्नाच्या गणक पटीन वजा करचो, सगळे भाजकाच्या वर्गाकडेन विभागचें.
\frac{\left(x^{2}-1\right)x^{1-1}-x^{1}\times 2x^{2-1}}{\left(x^{2}-1\right)^{2}}
पोलिनोमियलाचें व्यत्पन्न हें तांच्या संज्ञांच्या व्यत्पन्नाची बेरीज आसता. खंयच्याय थीर संख्येचें व्यत्पन्न 0 आसता. हाचें व्यत्पन्न ax^{n} हें nax^{n-1} आसा.
\frac{\left(x^{2}-1\right)x^{0}-x^{1}\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
अंकगणीत करचें.
\frac{x^{2}x^{0}-x^{0}-x^{1}\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
विभाजक विशम वापरून विस्तार करचो.
\frac{x^{2}-x^{0}-2x^{1+1}}{\left(x^{2}-1\right)^{2}}
समान बेझीचे पॉवर गुणूंक, तांच्या पुरकांची बेरीज करची.
\frac{x^{2}-x^{0}-2x^{2}}{\left(x^{2}-1\right)^{2}}
अंकगणीत करचें.
\frac{\left(1-2\right)x^{2}-x^{0}}{\left(x^{2}-1\right)^{2}}
समान संज्ञा एकठांय करच्यो.
\frac{-x^{2}-x^{0}}{\left(x^{2}-1\right)^{2}}
1 तल्यान 2 वजा करची.
\frac{-x^{2}-1}{\left(x^{2}-1\right)^{2}}
0 सोडून t खंयच्याय शब्दा खातीर, t^{0}=1.