मूल्यांकन करचें
\frac{5\left(a^{3}+6a^{2}+7a+7b\right)}{a\left(a+3\right)\left(a+6\right)}
विस्तार करचो
\frac{5\left(a^{3}+6a^{2}+7a+7b\right)}{\left(a+3\right)\left(a^{2}+6a\right)}
प्रस्नमाची
Algebra
कडेन 5 समस्या समान:
\frac{ 5a }{ a+3 } + \frac{ a+b }{ a+3 } \frac{ 35 }{ { a }^{ 2 } +6a }
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{\left(a+3\right)\left(a^{2}+6a\right)}
न्युमरेटर वेळा न्युमरेटराक आनी डिनोमिनेटर वेळा डिनोमिनेटराक गुणून \frac{35}{a^{2}+6a} वेळा \frac{a+b}{a+3} गुणचें.
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
\left(a+3\right)\left(a^{2}+6a\right) गुणकपद काडचें.
\frac{5aa\left(a+6\right)}{a\left(a+3\right)\left(a+6\right)}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. a+3 आनी a\left(a+3\right)\left(a+6\right) चो किमान सामान्य गुणाकार आसा a\left(a+3\right)\left(a+6\right). \frac{a\left(a+6\right)}{a\left(a+6\right)}क \frac{5a}{a+3} फावटी गुणचें.
\frac{5aa\left(a+6\right)+\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
\frac{5aa\left(a+6\right)}{a\left(a+3\right)\left(a+6\right)} आनी \frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{5a^{3}+30a^{2}+35a+35b}{a\left(a+3\right)\left(a+6\right)}
5aa\left(a+6\right)+\left(a+b\right)\times 35 त गुणाकार करचे.
\frac{5a^{3}+30a^{2}+35a+35b}{a^{3}+9a^{2}+18a}
a\left(a+3\right)\left(a+6\right) विस्तारीत करचो.
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{\left(a+3\right)\left(a^{2}+6a\right)}
न्युमरेटर वेळा न्युमरेटराक आनी डिनोमिनेटर वेळा डिनोमिनेटराक गुणून \frac{35}{a^{2}+6a} वेळा \frac{a+b}{a+3} गुणचें.
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
\left(a+3\right)\left(a^{2}+6a\right) गुणकपद काडचें.
\frac{5aa\left(a+6\right)}{a\left(a+3\right)\left(a+6\right)}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. a+3 आनी a\left(a+3\right)\left(a+6\right) चो किमान सामान्य गुणाकार आसा a\left(a+3\right)\left(a+6\right). \frac{a\left(a+6\right)}{a\left(a+6\right)}क \frac{5a}{a+3} फावटी गुणचें.
\frac{5aa\left(a+6\right)+\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
\frac{5aa\left(a+6\right)}{a\left(a+3\right)\left(a+6\right)} आनी \frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{5a^{3}+30a^{2}+35a+35b}{a\left(a+3\right)\left(a+6\right)}
5aa\left(a+6\right)+\left(a+b\right)\times 35 त गुणाकार करचे.
\frac{5a^{3}+30a^{2}+35a+35b}{a^{3}+9a^{2}+18a}
a\left(a+3\right)\left(a+6\right) विस्तारीत करचो.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}