x खातीर सोडोवचें
x=5
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
x^{2}-9=2\left(x+3\right)
विभागणी शुन्यची व्याख्या नाशिल्ल्यान अचल x हो -3 च्या समान आसूंक शकना. 2\left(x+3\right) वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
x^{2}-9=2x+6
x+3 न 2 गुणपाक विभाजक विशमाचो वापर करचो.
x^{2}-9-2x=6
दोनूय कुशींतल्यान 2x वजा करचें.
x^{2}-9-2x-6=0
दोनूय कुशींतल्यान 6 वजा करचें.
x^{2}-15-2x=0
-15 मेळोवंक -9 आनी 6 वजा करचे.
x^{2}-2x-15=0
प्रमाणित फॉर्मात पॉलिनोमियल परत मांडचो. उच्च तें कमी पॉवर क्रमात संज्ञा मांडच्यो.
a+b=-2 ab=-15
गणीत सोडोवंक, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सिध्दांत वापरून x^{2}-2x-15 घटक. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
1,-15 3,-5
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b नकारात्मक आसा, नकारात्मक संख्येक सकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -15.
1-15=-14 3-5=-2
दरेक जोडयेखातीर गणीत मेजचें.
a=-5 b=3
जोडयेचें उत्तर जें दिता गणीत -2.
\left(x-5\right)\left(x+3\right)
\left(x+a\right)\left(x+b\right) मेळिल्ले मोलां वापरून फॅक्टर केल्लें एक्सप्रेशन परत बरोवचें.
x=5 x=-3
गणीताचें उत्तर सोदूंक, सोडोवचें x-5=0 आनी x+3=0.
x=5
अचल x हो -3 कडेन समान आसूंक शकना.
x^{2}-9=2\left(x+3\right)
विभागणी शुन्यची व्याख्या नाशिल्ल्यान अचल x हो -3 च्या समान आसूंक शकना. 2\left(x+3\right) वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
x^{2}-9=2x+6
x+3 न 2 गुणपाक विभाजक विशमाचो वापर करचो.
x^{2}-9-2x=6
दोनूय कुशींतल्यान 2x वजा करचें.
x^{2}-9-2x-6=0
दोनूय कुशींतल्यान 6 वजा करचें.
x^{2}-15-2x=0
-15 मेळोवंक -9 आनी 6 वजा करचे.
x^{2}-2x-15=0
प्रमाणित फॉर्मात पॉलिनोमियल परत मांडचो. उच्च तें कमी पॉवर क्रमात संज्ञा मांडच्यो.
a+b=-2 ab=1\left(-15\right)=-15
गणीत सोडोवंक, गट करून दाव्या हातान घटक. पयलीं, दावी बाजू x^{2}+ax+bx-15 म्हूण परत बरोवंक जाय आसा. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
1,-15 3,-5
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b नकारात्मक आसा, नकारात्मक संख्येक सकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -15.
1-15=-14 3-5=-2
दरेक जोडयेखातीर गणीत मेजचें.
a=-5 b=3
जोडयेचें उत्तर जें दिता गणीत -2.
\left(x^{2}-5x\right)+\left(3x-15\right)
x^{2}-2x-15 हें \left(x^{2}-5x\right)+\left(3x-15\right) बरोवचें.
x\left(x-5\right)+3\left(x-5\right)
पयल्यात xफॅक्टर आवट आनी 3 दुस-या गटात.
\left(x-5\right)\left(x+3\right)
फॅक्टर आवट सामान्य शब्द x-5 वितरीत गूणधर्म वापरून.
x=5 x=-3
गणीताचें उत्तर सोदूंक, सोडोवचें x-5=0 आनी x+3=0.
x=5
अचल x हो -3 कडेन समान आसूंक शकना.
x^{2}-9=2\left(x+3\right)
विभागणी शुन्यची व्याख्या नाशिल्ल्यान अचल x हो -3 च्या समान आसूंक शकना. 2\left(x+3\right) वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
x^{2}-9=2x+6
x+3 न 2 गुणपाक विभाजक विशमाचो वापर करचो.
x^{2}-9-2x=6
दोनूय कुशींतल्यान 2x वजा करचें.
x^{2}-9-2x-6=0
दोनूय कुशींतल्यान 6 वजा करचें.
x^{2}-15-2x=0
-15 मेळोवंक -9 आनी 6 वजा करचे.
x^{2}-2x-15=0
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-15\right)}}{2}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 1, b खातीर -2 आनी c खातीर -15 बदली घेवचे.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-15\right)}}{2}
-2 वर्गमूळ.
x=\frac{-\left(-2\right)±\sqrt{4+60}}{2}
-15क -4 फावटी गुणचें.
x=\frac{-\left(-2\right)±\sqrt{64}}{2}
60 कडेन 4 ची बेरीज करची.
x=\frac{-\left(-2\right)±8}{2}
64 चें वर्गमूळ घेवचें.
x=\frac{2±8}{2}
-2 च्या विरुध्दार्थी अंक 2 आसा.
x=\frac{10}{2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{2±8}{2} सोडोवचें. 8 कडेन 2 ची बेरीज करची.
x=5
2 न10 क भाग लावचो.
x=-\frac{6}{2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{2±8}{2} सोडोवचें. 2 तल्यान 8 वजा करची.
x=-3
2 न-6 क भाग लावचो.
x=5 x=-3
समिकरण आतां सुटावें जालें.
x=5
अचल x हो -3 कडेन समान आसूंक शकना.
x^{2}-9=2\left(x+3\right)
विभागणी शुन्यची व्याख्या नाशिल्ल्यान अचल x हो -3 च्या समान आसूंक शकना. 2\left(x+3\right) वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
x^{2}-9=2x+6
x+3 न 2 गुणपाक विभाजक विशमाचो वापर करचो.
x^{2}-9-2x=6
दोनूय कुशींतल्यान 2x वजा करचें.
x^{2}-2x=6+9
दोनूय वटांनी 9 जोडचे.
x^{2}-2x=15
15 मेळोवंक 6 आनी 9 ची बेरीज करची.
x^{2}-2x+1=15+1
-1 मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो -2 क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी -1 च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}-2x+1=16
1 कडेन 15 ची बेरीज करची.
\left(x-1\right)^{2}=16
गुणकपद x^{2}-2x+1. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x-1=4 x-1=-4
सोंपें करचें.
x=5 x=-3
समिकरणाच्या दोनूय कुशींतल्यान 1 ची बेरीज करची.
x=5
अचल x हो -3 कडेन समान आसूंक शकना.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}