मूल्यांकन करचें
\frac{139}{24}\approx 5.791666667
गुणकपद
\frac{139}{2 ^ {3} \cdot 3} = 5\frac{19}{24} = 5.791666666666667
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{\frac{\frac{1}{2}}{\left(\frac{2}{3}\right)^{-1}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\sqrt[5]{\frac{1}{32}} मेजचो आनी \frac{1}{2} मेळोवचो.
\frac{\frac{\frac{1}{2}}{\frac{3}{2}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{3}{2} मेळोवंक -1 चो \frac{2}{3} पॉवर मेजचो.
\frac{\frac{1}{2}\times \frac{2}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{3}{2} च्या पुरकाक \frac{1}{2} गुणून \frac{3}{2} न \frac{1}{2} क भाग लावचो.
\frac{\frac{1}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{1}{3} मेळोवंक \frac{1}{2} आनी \frac{2}{3} गुणचें.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{2}{3} मेळोवंक 1 आनी \frac{1}{3} वजा करचे.
\frac{\frac{1}{3}}{\frac{3}{2}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{3}{2} मेळोवंक \frac{2}{3} आनी \frac{9}{4} गुणचें.
\frac{\frac{1}{3}}{2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
2 मेळोवंक \frac{3}{2} आनी \frac{1}{2} ची बेरीज करची.
\frac{1}{3\times 2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
एकोडो अपूर्णांक म्हूण \frac{\frac{1}{3}}{2} स्पश्ट करचें.
\frac{1}{6}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
6 मेळोवंक 3 आनी 2 गुणचें.
\frac{1}{6}+\frac{\sqrt{\frac{9}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{9}{25} मेळोवंक 1 आनी \frac{16}{25} वजा करचे.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{\sqrt{9}}{\sqrt{25}} च्या वर्ग मूळाचो भागाकार म्हूण \frac{9}{25} च्या वर्गमूळाचो भागाकार परत बरोवचो. न्युमरेटर आनी डिनोमिनेटर अशे दोगांचेय वर्ग मूळ घेवचे.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\frac{15}{2}}}
\frac{15}{2} मेळोवंक 1 चो \frac{15}{2} पॉवर मेजचो.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{4}{5}\times \frac{2}{15}}
\frac{15}{2} च्या पुरकाक \frac{4}{5} गुणून \frac{15}{2} न \frac{4}{5} क भाग लावचो.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{8}{75}}
\frac{8}{75} मेळोवंक \frac{4}{5} आनी \frac{2}{15} गुणचें.
\frac{1}{6}+\frac{3}{5}\times \frac{75}{8}
\frac{8}{75} च्या पुरकाक \frac{3}{5} गुणून \frac{8}{75} न \frac{3}{5} क भाग लावचो.
\frac{1}{6}+\frac{45}{8}
\frac{45}{8} मेळोवंक \frac{3}{5} आनी \frac{75}{8} गुणचें.
\frac{139}{24}
\frac{139}{24} मेळोवंक \frac{1}{6} आनी \frac{45}{8} ची बेरीज करची.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}