मुखेल आशय वगडाय
w.r.t. y चो फरक काडचो
Tick mark Image
मूल्यांकन करचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{\left(2y^{2}+7y^{1}+6\right)\frac{\mathrm{d}}{\mathrm{d}y}(y^{1})-y^{1}\frac{\mathrm{d}}{\mathrm{d}y}(2y^{2}+7y^{1}+6)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
खंयच्याय दोन फरकांच्या कार्यां खातीर, दोन कार्यांच्या गुणकाराचो व्यत्पन्न हो गणकाच्या व्यत्पन्नाच्या भाजक पटीन आसा, जो भाजकाच्या व्यत्पन्नाच्या गणक पटीन वजा करचो, सगळे भाजकाच्या वर्गाकडेन विभागचें.
\frac{\left(2y^{2}+7y^{1}+6\right)y^{1-1}-y^{1}\left(2\times 2y^{2-1}+7y^{1-1}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
पोलिनोमियलाचें व्यत्पन्न हें तांच्या संज्ञांच्या व्यत्पन्नाची बेरीज आसता. खंयच्याय थीर संख्येचें व्यत्पन्न 0 आसता. हाचें व्यत्पन्न ax^{n} हें nax^{n-1} आसा.
\frac{\left(2y^{2}+7y^{1}+6\right)y^{0}-y^{1}\left(4y^{1}+7y^{0}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
सोंपें करचें.
\frac{2y^{2}y^{0}+7y^{1}y^{0}+6y^{0}-y^{1}\left(4y^{1}+7y^{0}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
y^{0}क 2y^{2}+7y^{1}+6 फावटी गुणचें.
\frac{2y^{2}y^{0}+7y^{1}y^{0}+6y^{0}-\left(y^{1}\times 4y^{1}+y^{1}\times 7y^{0}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
4y^{1}+7y^{0}क y^{1} फावटी गुणचें.
\frac{2y^{2}+7y^{1}+6y^{0}-\left(4y^{1+1}+7y^{1}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
समान बेझीचे पॉवर गुणूंक, तांच्या पुरकांची बेरीज करची.
\frac{2y^{2}+7y^{1}+6y^{0}-\left(4y^{2}+7y^{1}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
सोंपें करचें.
\frac{-2y^{2}+6y^{0}}{\left(2y^{2}+7y^{1}+6\right)^{2}}
समान संज्ञा एकठांय करच्यो.
\frac{-2y^{2}+6y^{0}}{\left(2y^{2}+7y+6\right)^{2}}
t खंयच्याय शब्दा खातीर, t^{1}=t.
\frac{-2y^{2}+6\times 1}{\left(2y^{2}+7y+6\right)^{2}}
0 सोडून t खंयच्याय शब्दा खातीर, t^{0}=1.
\frac{-2y^{2}+6}{\left(2y^{2}+7y+6\right)^{2}}
t खंयच्याय शब्दा खातीर, t\times 1=t आनी 1t=t .