मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
w.r.t. v चो फरक काडचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. v+1 आनी v-1 चो किमान सामान्य गुणाकार आसा \left(v-1\right)\left(v+1\right). \frac{v-1}{v-1}क \frac{v}{v+1} फावटी गुणचें. \frac{v+1}{v+1}क \frac{3}{v-1} फावटी गुणचें.
\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} आनी \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
v\left(v-1\right)+3\left(v+1\right) त गुणाकार करचे.
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
v^{2}-v+3v+3 त समान शब्द एकठांय करचे.
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)}
v^{2}-1 गुणकपद काडचें.
\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)}
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} आनी \frac{6}{\left(v-1\right)\left(v+1\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर वजा करून तांची वजाबाकी करची.
\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}
v^{2}+2v+3-6 त समान शब्द एकठांय करचे.
\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)}
\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)} आदींच फॅक्टर्ड नाशिल्लें ऍक्सप्रेशन फॅक्ट करचें.
\frac{v+3}{v+1}
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय v-1 रद्द करचो.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. v+1 आनी v-1 चो किमान सामान्य गुणाकार आसा \left(v-1\right)\left(v+1\right). \frac{v-1}{v-1}क \frac{v}{v+1} फावटी गुणचें. \frac{v+1}{v+1}क \frac{3}{v-1} फावटी गुणचें.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} आनी \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
v\left(v-1\right)+3\left(v+1\right) त गुणाकार करचे.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
v^{2}-v+3v+3 त समान शब्द एकठांय करचे.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)})
v^{2}-1 गुणकपद काडचें.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)})
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} आनी \frac{6}{\left(v-1\right)\left(v+1\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर वजा करून तांची वजाबाकी करची.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)})
v^{2}+2v+3-6 त समान शब्द एकठांय करचे.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)})
\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)} आदींच फॅक्टर्ड नाशिल्लें ऍक्सप्रेशन फॅक्ट करचें.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v+3}{v+1})
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय v-1 रद्द करचो.
\frac{\left(v^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+3)-\left(v^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+1)}{\left(v^{1}+1\right)^{2}}
खंयच्याय दोन फरकांच्या कार्यां खातीर, दोन कार्यांच्या गुणकाराचो व्यत्पन्न हो गणकाच्या व्यत्पन्नाच्या भाजक पटीन आसा, जो भाजकाच्या व्यत्पन्नाच्या गणक पटीन वजा करचो, सगळे भाजकाच्या वर्गाकडेन विभागचें.
\frac{\left(v^{1}+1\right)v^{1-1}-\left(v^{1}+3\right)v^{1-1}}{\left(v^{1}+1\right)^{2}}
पोलिनोमियलाचें व्यत्पन्न हें तांच्या संज्ञांच्या व्यत्पन्नाची बेरीज आसता. खंयच्याय थीर संख्येचें व्यत्पन्न 0 आसता. हाचें व्यत्पन्न ax^{n} हें nax^{n-1} आसा.
\frac{\left(v^{1}+1\right)v^{0}-\left(v^{1}+3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
अंकगणीत करचें.
\frac{v^{1}v^{0}+v^{0}-\left(v^{1}v^{0}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
विभाजक विशम वापरून विस्तार करचो.
\frac{v^{1}+v^{0}-\left(v^{1}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
समान बेझीचे पॉवर गुणूंक, तांच्या पुरकांची बेरीज करची.
\frac{v^{1}+v^{0}-v^{1}-3v^{0}}{\left(v^{1}+1\right)^{2}}
अनावश्यक कौंस काडचे.
\frac{\left(1-1\right)v^{1}+\left(1-3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
समान संज्ञा एकठांय करच्यो.
\frac{-2v^{0}}{\left(v^{1}+1\right)^{2}}
1 हें 1 तल्यान आनी 3 हें 1 तल्यान वजा करचें.
\frac{-2v^{0}}{\left(v+1\right)^{2}}
t खंयच्याय शब्दा खातीर, t^{1}=t.
\frac{-2}{\left(v+1\right)^{2}}
0 सोडून t खंयच्याय शब्दा खातीर, t^{0}=1.