मूल्यांकन करचें
-\frac{m\left(m+n\right)}{n}
विस्तार करचो
-\frac{m^{2}+mn}{n}
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. \frac{n-m}{n-m}क n फावटी गुणचें.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
\frac{n\left(n-m\right)}{n-m} आनी \frac{n^{2}}{n-m} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर वजा करून तांची वजाबाकी करची.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
n\left(n-m\right)-n^{2} त गुणाकार करचे.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
n^{2}-nm-n^{2} त समान शब्द एकठांय करचे.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+1}
n^{2}-m^{2} गुणकपद काडचें.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}क 1 फावटी गुणचें.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}+\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} आनी \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}-m^{2}+mn-nm+n^{2}}{\left(m+n\right)\left(-m+n\right)}}
m^{2}+\left(m+n\right)\left(-m+n\right) त गुणाकार करचे.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
m^{2}-m^{2}+mn-nm+n^{2} त समान शब्द एकठांय करचे.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} च्या पुरकाक \frac{-nm}{n-m} गुणून \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} न \frac{-nm}{n-m} क भाग लावचो.
\frac{-m\left(m+n\right)}{n}
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय n\left(-m+n\right) रद्द करचो.
\frac{-m^{2}-mn}{n}
m+n न -m गुणपाक विभाजक विशमाचो वापर करचो.
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. \frac{n-m}{n-m}क n फावटी गुणचें.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
\frac{n\left(n-m\right)}{n-m} आनी \frac{n^{2}}{n-m} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर वजा करून तांची वजाबाकी करची.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
n\left(n-m\right)-n^{2} त गुणाकार करचे.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
n^{2}-nm-n^{2} त समान शब्द एकठांय करचे.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+1}
n^{2}-m^{2} गुणकपद काडचें.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}क 1 फावटी गुणचें.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}+\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} आनी \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}-m^{2}+mn-nm+n^{2}}{\left(m+n\right)\left(-m+n\right)}}
m^{2}+\left(m+n\right)\left(-m+n\right) त गुणाकार करचे.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
m^{2}-m^{2}+mn-nm+n^{2} त समान शब्द एकठांय करचे.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} च्या पुरकाक \frac{-nm}{n-m} गुणून \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} न \frac{-nm}{n-m} क भाग लावचो.
\frac{-m\left(m+n\right)}{n}
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय n\left(-m+n\right) रद्द करचो.
\frac{-m^{2}-mn}{n}
m+n न -m गुणपाक विभाजक विशमाचो वापर करचो.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}