मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
विस्तार करचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
b^{4}-1 गुणकपद काडचें. 1-b^{4} गुणकपद काडचें.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) आनी \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) चो किमान सामान्य गुणाकार आसा \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). \frac{-1}{-1}क \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} फावटी गुणचें.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} आनी \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2+3\left(-1\right) त गुणाकार करचे.
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2-3 त समान शब्द एकठांय करचे.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} आदींच फॅक्टर्ड नाशिल्लें ऍक्सप्रेशन फॅक्ट करचें.
\frac{1}{b^{2}+1}
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय \left(b-1\right)\left(b+1\right) रद्द करचो.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
b^{4}-1 गुणकपद काडचें. 1-b^{4} गुणकपद काडचें.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) आनी \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) चो किमान सामान्य गुणाकार आसा \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). \frac{-1}{-1}क \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} फावटी गुणचें.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} आनी \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2+3\left(-1\right) त गुणाकार करचे.
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2-3 त समान शब्द एकठांय करचे.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} आदींच फॅक्टर्ड नाशिल्लें ऍक्सप्रेशन फॅक्ट करचें.
\frac{1}{b^{2}+1}
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय \left(b-1\right)\left(b+1\right) रद्द करचो.