मूल्यांकन करचें
\frac{1}{b^{2}+1}
विस्तार करचो
\frac{1}{b^{2}+1}
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
b^{4}-1 गुणकपद काडचें. 1-b^{4} गुणकपद काडचें.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) आनी \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) चो किमान सामान्य गुणाकार आसा \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). \frac{-1}{-1}क \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} फावटी गुणचें.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} आनी \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2+3\left(-1\right) त गुणाकार करचे.
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2-3 त समान शब्द एकठांय करचे.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} आदींच फॅक्टर्ड नाशिल्लें ऍक्सप्रेशन फॅक्ट करचें.
\frac{1}{b^{2}+1}
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय \left(b-1\right)\left(b+1\right) रद्द करचो.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
b^{4}-1 गुणकपद काडचें. 1-b^{4} गुणकपद काडचें.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) आनी \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) चो किमान सामान्य गुणाकार आसा \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). \frac{-1}{-1}क \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} फावटी गुणचें.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} आनी \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2+3\left(-1\right) त गुणाकार करचे.
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2-3 त समान शब्द एकठांय करचे.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} आदींच फॅक्टर्ड नाशिल्लें ऍक्सप्रेशन फॅक्ट करचें.
\frac{1}{b^{2}+1}
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय \left(b-1\right)\left(b+1\right) रद्द करचो.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}