मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
गुणकपद
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{a}{\left(a-1\right)\left(-a-1\right)}+\frac{a}{1+a^{2}}
1-a^{2} गुणकपद काडचें.
\frac{a\left(a^{2}+1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}+\frac{a\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. \left(a-1\right)\left(-a-1\right) आनी 1+a^{2} चो किमान सामान्य गुणाकार आसा \left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right). \frac{a^{2}+1}{a^{2}+1}क \frac{a}{\left(a-1\right)\left(-a-1\right)} फावटी गुणचें. \frac{\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)}क \frac{a}{1+a^{2}} फावटी गुणचें.
\frac{a\left(a^{2}+1\right)+a\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
\frac{a\left(a^{2}+1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)} आनी \frac{a\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{a^{3}+a-a^{3}-a^{2}+a^{2}+a}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
a\left(a^{2}+1\right)+a\left(a-1\right)\left(-a-1\right) त गुणाकार करचे.
\frac{2a}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
a^{3}+a-a^{3}-a^{2}+a^{2}+a त समान शब्द एकठांय करचे.
\frac{2a}{-a^{4}+1}
\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right) विस्तारीत करचो.