मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
विस्तार करचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{\left(a-2\right)\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a+2\right)}+\frac{a}{a^{3}+8}
\frac{a^{3}-8}{a^{2}-4} आदींच फॅक्टर्ड नाशिल्लें ऍक्सप्रेशन फॅक्ट करचें.
\frac{a^{2}+2a+4}{a+2}+\frac{a}{a^{3}+8}
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय a-2 रद्द करचो.
\frac{a^{2}+2a+4}{a+2}+\frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
a^{3}+8 गुणकपद काडचें.
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)}{\left(a+2\right)\left(a^{2}-2a+4\right)}+\frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. a+2 आनी \left(a+2\right)\left(a^{2}-2a+4\right) चो किमान सामान्य गुणाकार आसा \left(a+2\right)\left(a^{2}-2a+4\right). \frac{a^{2}-2a+4}{a^{2}-2a+4}क \frac{a^{2}+2a+4}{a+2} फावटी गुणचें.
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)+a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)}{\left(a+2\right)\left(a^{2}-2a+4\right)} आनी \frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{a^{4}-2a^{3}+4a^{2}+2a^{3}-4a^{2}+8a+4a^{2}-8a+16+a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)+a त गुणाकार करचे.
\frac{a^{4}+4a^{2}+a+16}{\left(a+2\right)\left(a^{2}-2a+4\right)}
a^{4}-2a^{3}+4a^{2}+2a^{3}-4a^{2}+8a+4a^{2}-8a+16+a त समान शब्द एकठांय करचे.
\frac{a^{4}+4a^{2}+a+16}{a^{3}+8}
\left(a+2\right)\left(a^{2}-2a+4\right) विस्तारीत करचो.
\frac{\left(a-2\right)\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a+2\right)}+\frac{a}{a^{3}+8}
\frac{a^{3}-8}{a^{2}-4} आदींच फॅक्टर्ड नाशिल्लें ऍक्सप्रेशन फॅक्ट करचें.
\frac{a^{2}+2a+4}{a+2}+\frac{a}{a^{3}+8}
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय a-2 रद्द करचो.
\frac{a^{2}+2a+4}{a+2}+\frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
a^{3}+8 गुणकपद काडचें.
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)}{\left(a+2\right)\left(a^{2}-2a+4\right)}+\frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. a+2 आनी \left(a+2\right)\left(a^{2}-2a+4\right) चो किमान सामान्य गुणाकार आसा \left(a+2\right)\left(a^{2}-2a+4\right). \frac{a^{2}-2a+4}{a^{2}-2a+4}क \frac{a^{2}+2a+4}{a+2} फावटी गुणचें.
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)+a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)}{\left(a+2\right)\left(a^{2}-2a+4\right)} आनी \frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{a^{4}-2a^{3}+4a^{2}+2a^{3}-4a^{2}+8a+4a^{2}-8a+16+a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)+a त गुणाकार करचे.
\frac{a^{4}+4a^{2}+a+16}{\left(a+2\right)\left(a^{2}-2a+4\right)}
a^{4}-2a^{3}+4a^{2}+2a^{3}-4a^{2}+8a+4a^{2}-8a+16+a त समान शब्द एकठांय करचे.
\frac{a^{4}+4a^{2}+a+16}{a^{3}+8}
\left(a+2\right)\left(a^{2}-2a+4\right) विस्तारीत करचो.