मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{4\left(36-36\sqrt{3}+9\left(\sqrt{3}\right)^{2}\right)+1}{12-6\sqrt{3}}
बायनोमियल प्रमेयाचो वापर करून \left(a-b\right)^{2}=a^{2}-2ab+b^{2} विस्तारावचें \left(6-3\sqrt{3}\right)^{2}.
\frac{4\left(36-36\sqrt{3}+9\times 3\right)+1}{12-6\sqrt{3}}
\sqrt{3} चो वर्ग 3 आसा.
\frac{4\left(36-36\sqrt{3}+27\right)+1}{12-6\sqrt{3}}
27 मेळोवंक 9 आनी 3 गुणचें.
\frac{4\left(63-36\sqrt{3}\right)+1}{12-6\sqrt{3}}
63 मेळोवंक 36 आनी 27 ची बेरीज करची.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{\left(12-6\sqrt{3}\right)\left(12+6\sqrt{3}\right)}
न्युमरेटर आनी डिनोमिनेटर 12+6\sqrt{3} न गुणून \frac{4\left(63-36\sqrt{3}\right)+1}{12-6\sqrt{3}} चो डिनोमिनेटर रेशनलायझ तर्कसंगत करचो.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{12^{2}-\left(-6\sqrt{3}\right)^{2}}
विचारांत घेयात \left(12-6\sqrt{3}\right)\left(12+6\sqrt{3}\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-\left(-6\sqrt{3}\right)^{2}}
144 मेळोवंक 2 चो 12 पॉवर मेजचो.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-\left(-6\right)^{2}\left(\sqrt{3}\right)^{2}}
\left(-6\sqrt{3}\right)^{2} विस्तारीत करचो.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-36\left(\sqrt{3}\right)^{2}}
36 मेळोवंक 2 चो -6 पॉवर मेजचो.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-36\times 3}
\sqrt{3} चो वर्ग 3 आसा.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-108}
108 मेळोवंक 36 आनी 3 गुणचें.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{36}
36 मेळोवंक 144 आनी 108 वजा करचे.
\frac{\left(252-144\sqrt{3}+1\right)\left(12+6\sqrt{3}\right)}{36}
63-36\sqrt{3} न 4 गुणपाक विभाजक विशमाचो वापर करचो.
\frac{\left(253-144\sqrt{3}\right)\left(12+6\sqrt{3}\right)}{36}
253 मेळोवंक 252 आनी 1 ची बेरीज करची.
\frac{3036-210\sqrt{3}-864\left(\sqrt{3}\right)^{2}}{36}
वितरक गूणधर्माचो वापर करून 253-144\sqrt{3} क 12+6\sqrt{3} न गुणचें आनी संज्ञां भशेन एकठावणी करची.
\frac{3036-210\sqrt{3}-864\times 3}{36}
\sqrt{3} चो वर्ग 3 आसा.
\frac{3036-210\sqrt{3}-2592}{36}
-2592 मेळोवंक -864 आनी 3 गुणचें.
\frac{444-210\sqrt{3}}{36}
444 मेळोवंक 3036 आनी 2592 वजा करचे.