मूल्यांकन करचें
4\sqrt{6}\approx 9.797958971
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
न्युमरेटर आनी डिनोमिनेटर 2+\sqrt{2} न गुणून \frac{4\sqrt{3}}{2-\sqrt{2}} चो डिनोमिनेटर रेशनलायझ तर्कसंगत करचो.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
विचारांत घेयात \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{4-2}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
2 वर्गमूळ. \sqrt{2} वर्गमूळ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
2 मेळोवंक 4 आनी 2 वजा करचे.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30}{4\sqrt{3}-3\sqrt{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
18=3^{2}\times 2 गुणकपद काडचें. \sqrt{3^{2}}\sqrt{2} च्या वर्ग मूळाचो गुणाकार म्हूण \sqrt{3^{2}\times 2} च्या वर्गमूळाचो गुणाकार परत बरोवचो. 3^{2} चें वर्गमूळ घेवचें.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left(4\sqrt{3}-3\sqrt{2}\right)\left(4\sqrt{3}+3\sqrt{2}\right)}-\frac{\sqrt{18}}{3-\sqrt{12}}
न्युमरेटर आनी डिनोमिनेटर 4\sqrt{3}+3\sqrt{2} न गुणून \frac{30}{4\sqrt{3}-3\sqrt{2}} चो डिनोमिनेटर रेशनलायझ तर्कसंगत करचो.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left(4\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
विचारांत घेयात \left(4\sqrt{3}-3\sqrt{2}\right)\left(4\sqrt{3}+3\sqrt{2}\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{4^{2}\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
\left(4\sqrt{3}\right)^{2} विस्तारीत करचो.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{16\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
16 मेळोवंक 2 चो 4 पॉवर मेजचो.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{16\times 3-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
\sqrt{3} चो वर्ग 3 आसा.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
48 मेळोवंक 16 आनी 3 गुणचें.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-\left(-3\right)^{2}\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
\left(-3\sqrt{2}\right)^{2} विस्तारीत करचो.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-9\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
9 मेळोवंक 2 चो -3 पॉवर मेजचो.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-9\times 2}-\frac{\sqrt{18}}{3-\sqrt{12}}
\sqrt{2} चो वर्ग 2 आसा.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-18}-\frac{\sqrt{18}}{3-\sqrt{12}}
18 मेळोवंक 9 आनी 2 गुणचें.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{30}-\frac{\sqrt{18}}{3-\sqrt{12}}
30 मेळोवंक 48 आनी 18 वजा करचे.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\left(4\sqrt{3}+3\sqrt{2}\right)-\frac{\sqrt{18}}{3-\sqrt{12}}
30 आनी 30 रद्द करचें.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{\sqrt{18}}{3-\sqrt{12}}
4\sqrt{3}+3\sqrt{2} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}}{3-\sqrt{12}}
18=3^{2}\times 2 गुणकपद काडचें. \sqrt{3^{2}}\sqrt{2} च्या वर्ग मूळाचो गुणाकार म्हूण \sqrt{3^{2}\times 2} च्या वर्गमूळाचो गुणाकार परत बरोवचो. 3^{2} चें वर्गमूळ घेवचें.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}}{3-2\sqrt{3}}
12=2^{2}\times 3 गुणकपद काडचें. \sqrt{2^{2}}\sqrt{3} च्या वर्ग मूळाचो गुणाकार म्हूण \sqrt{2^{2}\times 3} च्या वर्गमूळाचो गुणाकार परत बरोवचो. 2^{2} चें वर्गमूळ घेवचें.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{\left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right)}
न्युमरेटर आनी डिनोमिनेटर 3+2\sqrt{3} न गुणून \frac{3\sqrt{2}}{3-2\sqrt{3}} चो डिनोमिनेटर रेशनलायझ तर्कसंगत करचो.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{3^{2}-\left(-2\sqrt{3}\right)^{2}}
विचारांत घेयात \left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-\left(-2\sqrt{3}\right)^{2}}
9 मेळोवंक 2 चो 3 पॉवर मेजचो.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}
\left(-2\sqrt{3}\right)^{2} विस्तारीत करचो.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-4\left(\sqrt{3}\right)^{2}}
4 मेळोवंक 2 चो -2 पॉवर मेजचो.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-4\times 3}
\sqrt{3} चो वर्ग 3 आसा.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-12}
12 मेळोवंक 4 आनी 3 गुणचें.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{-3}
-3 मेळोवंक 9 आनी 12 वजा करचे.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\left(-\sqrt{2}\left(3+2\sqrt{3}\right)\right)
-3 आनी -3 रद्द करचें.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
-\sqrt{2}\left(3+2\sqrt{3}\right) च्या विरुध्दार्थी अंक \sqrt{2}\left(3+2\sqrt{3}\right) आसा.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}+\frac{2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. \frac{2}{2}क -4\sqrt{3}-3\sqrt{2} फावटी गुणचें.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)+2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2} आनी \frac{2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{8\sqrt{3}+4\sqrt{6}-8\sqrt{3}-6\sqrt{2}}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
4\sqrt{3}\left(2+\sqrt{2}\right)+2\left(-4\sqrt{3}-3\sqrt{2}\right) त गुणाकार करचे.
\frac{4\sqrt{6}-6\sqrt{2}}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
8\sqrt{3}+4\sqrt{6}-8\sqrt{3}-6\sqrt{2} त मेजणी करची.
2\sqrt{6}-3\sqrt{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
2\sqrt{6}-3\sqrt{2} मेळोवंक 4\sqrt{6}-6\sqrt{2} च्या दरेक संज्ञेक 2 न भाग लावचो.
2\sqrt{6}-3\sqrt{2}+3\sqrt{2}+2\sqrt{2}\sqrt{3}
3+2\sqrt{3} न \sqrt{2} गुणपाक विभाजक विशमाचो वापर करचो.
2\sqrt{6}-3\sqrt{2}+3\sqrt{2}+2\sqrt{6}
\sqrt{2} आनी \sqrt{3} गुणूंक, वर्गमुळाच्या खाला संख्या गुणची.
2\sqrt{6}+2\sqrt{6}
0 मेळोवंक -3\sqrt{2} आनी 3\sqrt{2} एकठांय करचें.
4\sqrt{6}
4\sqrt{6} मेळोवंक 2\sqrt{6} आनी 2\sqrt{6} एकठांय करचें.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}