मूल्यांकन करचें
15\sqrt{5}+19\sqrt{2}\approx 60.411077348
गुणकपद
15 \sqrt{5} + 19 \sqrt{2} = 60.411077348
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right)}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
न्युमरेटर आनी डिनोमिनेटर 2\sqrt{10}+3 न गुणून \frac{31\sqrt{2}+31\sqrt{5}}{2\sqrt{10}-3} चो डिनोमिनेटर रेशनलायझ तर्कसंगत करचो.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
विचारांत घेयात \left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{2^{2}\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
\left(2\sqrt{10}\right)^{2} विस्तारीत करचो.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
4 मेळोवंक 2 चो 2 पॉवर मेजचो.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\times 10-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
\sqrt{10} चो वर्ग 10 आसा.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
40 मेळोवंक 4 आनी 10 गुणचें.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-9}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
9 मेळोवंक 2 चो 3 पॉवर मेजचो.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
31 मेळोवंक 40 आनी 9 वजा करचे.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{\left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right)}
न्युमरेटर आनी डिनोमिनेटर 3+2\sqrt{10} न गुणून \frac{62\sqrt{2}}{3-2\sqrt{10}} चो डिनोमिनेटर रेशनलायझ तर्कसंगत करचो.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{3^{2}-\left(-2\sqrt{10}\right)^{2}}
विचारांत घेयात \left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\sqrt{10}\right)^{2}}
9 मेळोवंक 2 चो 3 पॉवर मेजचो.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\right)^{2}\left(\sqrt{10}\right)^{2}}
\left(-2\sqrt{10}\right)^{2} विस्तारीत करचो.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\left(\sqrt{10}\right)^{2}}
4 मेळोवंक 2 चो -2 पॉवर मेजचो.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\times 10}
\sqrt{10} चो वर्ग 10 आसा.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-40}
40 मेळोवंक 4 आनी 10 गुणचें.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{-31}
-31 मेळोवंक 9 आनी 40 वजा करचे.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\left(-2\sqrt{2}\left(3+2\sqrt{10}\right)\right)
-2\sqrt{2}\left(3+2\sqrt{10}\right) मेळोवंक 62\sqrt{2}\left(3+2\sqrt{10}\right) क -31 न भाग लावचो.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
-2\sqrt{2}\left(3+2\sqrt{10}\right) च्या विरुध्दार्थी अंक 2\sqrt{2}\left(3+2\sqrt{10}\right) आसा.
\frac{62\sqrt{10}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
31\sqrt{2}+31\sqrt{5}च्या प्रत्येकी टर्माक 2\sqrt{10}+3 च्या प्रत्येकी टर्मान गुणाकार करून वितरक गुणधर्म लागू करचो.
\frac{62\sqrt{2}\sqrt{5}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
10=2\times 5 गुणकपद काडचें. \sqrt{2}\sqrt{5} च्या वर्ग मूळाचो गुणाकार म्हूण \sqrt{2\times 5} च्या वर्गमूळाचो गुणाकार परत बरोवचो.
\frac{62\times 2\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
2 मेळोवंक \sqrt{2} आनी \sqrt{2} गुणचें.
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
124 मेळोवंक 62 आनी 2 गुणचें.
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{5}\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
10=5\times 2 गुणकपद काडचें. \sqrt{5}\sqrt{2} च्या वर्ग मूळाचो गुणाकार म्हूण \sqrt{5\times 2} च्या वर्गमूळाचो गुणाकार परत बरोवचो.
\frac{124\sqrt{5}+93\sqrt{2}+62\times 5\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
5 मेळोवंक \sqrt{5} आनी \sqrt{5} गुणचें.
\frac{124\sqrt{5}+93\sqrt{2}+310\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
310 मेळोवंक 62 आनी 5 गुणचें.
\frac{124\sqrt{5}+403\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
403\sqrt{2} मेळोवंक 93\sqrt{2} आनी 310\sqrt{2} एकठांय करचें.
\frac{217\sqrt{5}+403\sqrt{2}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
217\sqrt{5} मेळोवंक 124\sqrt{5} आनी 93\sqrt{5} एकठांय करचें.
7\sqrt{5}+13\sqrt{2}+2\sqrt{2}\left(3+2\sqrt{10}\right)
7\sqrt{5}+13\sqrt{2} मेळोवंक 217\sqrt{5}+403\sqrt{2} च्या दरेक संज्ञेक 31 न भाग लावचो.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{10}\sqrt{2}
3+2\sqrt{10} न 2\sqrt{2} गुणपाक विभाजक विशमाचो वापर करचो.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{2}\sqrt{5}\sqrt{2}
10=2\times 5 गुणकपद काडचें. \sqrt{2}\sqrt{5} च्या वर्ग मूळाचो गुणाकार म्हूण \sqrt{2\times 5} च्या वर्गमूळाचो गुणाकार परत बरोवचो.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\times 2\sqrt{5}
2 मेळोवंक \sqrt{2} आनी \sqrt{2} गुणचें.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+8\sqrt{5}
8 मेळोवंक 4 आनी 2 गुणचें.
7\sqrt{5}+19\sqrt{2}+8\sqrt{5}
19\sqrt{2} मेळोवंक 13\sqrt{2} आनी 6\sqrt{2} एकठांय करचें.
15\sqrt{5}+19\sqrt{2}
15\sqrt{5} मेळोवंक 7\sqrt{5} आनी 8\sqrt{5} एकठांय करचें.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}