मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
गुणकपद
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{2w}{\left(w-1\right)\left(w+1\right)}+\frac{w}{w-1}
w^{2}-1 गुणकपद काडचें.
\frac{2w}{\left(w-1\right)\left(w+1\right)}+\frac{w\left(w+1\right)}{\left(w-1\right)\left(w+1\right)}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. \left(w-1\right)\left(w+1\right) आनी w-1 चो किमान सामान्य गुणाकार आसा \left(w-1\right)\left(w+1\right). \frac{w+1}{w+1}क \frac{w}{w-1} फावटी गुणचें.
\frac{2w+w\left(w+1\right)}{\left(w-1\right)\left(w+1\right)}
\frac{2w}{\left(w-1\right)\left(w+1\right)} आनी \frac{w\left(w+1\right)}{\left(w-1\right)\left(w+1\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{2w+w^{2}+w}{\left(w-1\right)\left(w+1\right)}
2w+w\left(w+1\right) त गुणाकार करचे.
\frac{3w+w^{2}}{\left(w-1\right)\left(w+1\right)}
2w+w^{2}+w त समान शब्द एकठांय करचे.
\frac{3w+w^{2}}{w^{2}-1}
\left(w-1\right)\left(w+1\right) विस्तारीत करचो.