मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
w.r.t. m चो फरक काडचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m}{\left(m+n\right)\left(m-n\right)}-\frac{1}{m-n}
m^{3}+n^{3} गुणकपद काडचें. m^{2}-n^{2} गुणकपद काडचें.
\frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. \left(m+n\right)\left(m^{2}-mn+n^{2}\right) आनी \left(m+n\right)\left(m-n\right) चो किमान सामान्य गुणाकार आसा \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right). \frac{m-n}{m-n}क \frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)} फावटी गुणचें. \frac{m^{2}-mn+n^{2}}{m^{2}-mn+n^{2}}क \frac{2m}{\left(m+n\right)\left(m-n\right)} फावटी गुणचें.
\frac{2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
\frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} आनी \frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right) त गुणाकार करचे.
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2} त समान शब्द एकठांय करचे.
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right) आनी m-n चो किमान सामान्य गुणाकार आसा \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right). \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}क \frac{1}{m-n} फावटी गुणचें.
\frac{2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} आनी \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर वजा करून तांची वजाबाकी करची.
\frac{2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right) त गुणाकार करचे.
\frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3} त समान शब्द एकठांय करचे.
\frac{\left(m-n\right)\left(m^{2}+mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
\frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} आदींच फॅक्टर्ड नाशिल्लें ऍक्सप्रेशन फॅक्ट करचें.
\frac{m^{2}+mn+n^{2}}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय m-n रद्द करचो.
\frac{m^{2}+mn+n^{2}}{m^{3}+n^{3}}
\left(m+n\right)\left(m^{2}-mn+n^{2}\right) विस्तारीत करचो.