मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
w.r.t. a चो फरक काडचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}-\frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. 2a+3 आनी 3-2a चो किमान सामान्य गुणाकार आसा \left(-2a+3\right)\left(2a+3\right). \frac{-2a+3}{-2a+3}क \frac{2}{2a+3} फावटी गुणचें. \frac{2a+3}{2a+3}क \frac{1}{3-2a} फावटी गुणचें.
\frac{2\left(-2a+3\right)-\left(2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}
\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)} आनी \frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर वजा करून तांची वजाबाकी करची.
\frac{-4a+6-2a-3}{\left(-2a+3\right)\left(2a+3\right)}
2\left(-2a+3\right)-\left(2a+3\right) त गुणाकार करचे.
\frac{-6a+3}{\left(-2a+3\right)\left(2a+3\right)}
-4a+6-2a-3 त समान शब्द एकठांय करचे.
\frac{-6a+3}{-4a^{2}+9}
\left(-2a+3\right)\left(2a+3\right) विस्तारीत करचो.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}-\frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)})
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. 2a+3 आनी 3-2a चो किमान सामान्य गुणाकार आसा \left(-2a+3\right)\left(2a+3\right). \frac{-2a+3}{-2a+3}क \frac{2}{2a+3} फावटी गुणचें. \frac{2a+3}{2a+3}क \frac{1}{3-2a} फावटी गुणचें.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(-2a+3\right)-\left(2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)})
\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)} आनी \frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर वजा करून तांची वजाबाकी करची.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-4a+6-2a-3}{\left(-2a+3\right)\left(2a+3\right)})
2\left(-2a+3\right)-\left(2a+3\right) त गुणाकार करचे.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{\left(-2a+3\right)\left(2a+3\right)})
-4a+6-2a-3 त समान शब्द एकठांय करचे.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{-4a^{2}-6a+6a+9})
-2a+3च्या प्रत्येकी टर्माक 2a+3 च्या प्रत्येकी टर्मान गुणाकार करून वितरक गुणधर्म लागू करचो.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{-4a^{2}+9})
0 मेळोवंक -6a आनी 6a एकठांय करचें.
\frac{\left(-4a^{2}+9\right)\frac{\mathrm{d}}{\mathrm{d}a}(-6a^{1}+3)-\left(-6a^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}a}(-4a^{2}+9)}{\left(-4a^{2}+9\right)^{2}}
खंयच्याय दोन फरकांच्या कार्यां खातीर, दोन कार्यांच्या गुणकाराचो व्यत्पन्न हो गणकाच्या व्यत्पन्नाच्या भाजक पटीन आसा, जो भाजकाच्या व्यत्पन्नाच्या गणक पटीन वजा करचो, सगळे भाजकाच्या वर्गाकडेन विभागचें.
\frac{\left(-4a^{2}+9\right)\left(-6\right)a^{1-1}-\left(-6a^{1}+3\right)\times 2\left(-4\right)a^{2-1}}{\left(-4a^{2}+9\right)^{2}}
पोलिनोमियलाचें व्यत्पन्न हें तांच्या संज्ञांच्या व्यत्पन्नाची बेरीज आसता. खंयच्याय थीर संख्येचें व्यत्पन्न 0 आसता. हाचें व्यत्पन्न ax^{n} हें nax^{n-1} आसा.
\frac{\left(-4a^{2}+9\right)\left(-6\right)a^{0}-\left(-6a^{1}+3\right)\left(-8\right)a^{1}}{\left(-4a^{2}+9\right)^{2}}
अंकगणीत करचें.
\frac{-4a^{2}\left(-6\right)a^{0}+9\left(-6\right)a^{0}-\left(-6a^{1}\left(-8\right)a^{1}+3\left(-8\right)a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
विभाजक विशम वापरून विस्तार करचो.
\frac{-4\left(-6\right)a^{2}+9\left(-6\right)a^{0}-\left(-6\left(-8\right)a^{1+1}+3\left(-8\right)a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
समान बेझीचे पॉवर गुणूंक, तांच्या पुरकांची बेरीज करची.
\frac{24a^{2}-54a^{0}-\left(48a^{2}-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
अंकगणीत करचें.
\frac{24a^{2}-54a^{0}-48a^{2}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
अनावश्यक कौंस काडचे.
\frac{\left(24-48\right)a^{2}-54a^{0}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
समान संज्ञा एकठांय करच्यो.
\frac{-24a^{2}-54a^{0}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
24 तल्यान 48 वजा करची.
\frac{-24a^{2}-54a^{0}-\left(-24a\right)}{\left(-4a^{2}+9\right)^{2}}
t खंयच्याय शब्दा खातीर, t^{1}=t.
\frac{-24a^{2}-54-\left(-24a\right)}{\left(-4a^{2}+9\right)^{2}}
0 सोडून t खंयच्याय शब्दा खातीर, t^{0}=1.