मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
गुणकपद
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}
न्युमरेटर आनी डिनोमिनेटर 2\sqrt{3}-\sqrt{2} न गुणून \frac{2\sqrt{3}-\sqrt{2}}{2\sqrt{3}+\sqrt{2}} चो डिनोमिनेटर रेशनलायझ तर्कसंगत करचो.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
विचारांत घेयात \left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\left(2\sqrt{3}-\sqrt{2}\right)^{2} मेळोवंक 2\sqrt{3}-\sqrt{2} आनी 2\sqrt{3}-\sqrt{2} गुणचें.
\frac{4\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
बायनोमियल प्रमेयाचो वापर करून \left(a-b\right)^{2}=a^{2}-2ab+b^{2} विस्तारावचें \left(2\sqrt{3}-\sqrt{2}\right)^{2}.
\frac{4\times 3-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\sqrt{3} चो वर्ग 3 आसा.
\frac{12-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
12 मेळोवंक 4 आनी 3 गुणचें.
\frac{12-4\sqrt{6}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\sqrt{3} आनी \sqrt{2} गुणूंक, वर्गमुळाच्या खाला संख्या गुणची.
\frac{12-4\sqrt{6}+2}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\sqrt{2} चो वर्ग 2 आसा.
\frac{14-4\sqrt{6}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
14 मेळोवंक 12 आनी 2 ची बेरीज करची.
\frac{14-4\sqrt{6}}{2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\left(2\sqrt{3}\right)^{2} विस्तारीत करचो.
\frac{14-4\sqrt{6}}{4\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
4 मेळोवंक 2 चो 2 पॉवर मेजचो.
\frac{14-4\sqrt{6}}{4\times 3-\left(\sqrt{2}\right)^{2}}
\sqrt{3} चो वर्ग 3 आसा.
\frac{14-4\sqrt{6}}{12-\left(\sqrt{2}\right)^{2}}
12 मेळोवंक 4 आनी 3 गुणचें.
\frac{14-4\sqrt{6}}{12-2}
\sqrt{2} चो वर्ग 2 आसा.
\frac{14-4\sqrt{6}}{10}
10 मेळोवंक 12 आनी 2 वजा करचे.