मूल्यांकन करचें
\frac{649}{24}\approx 27.041666667
गुणकपद
\frac{11 \cdot 59}{2 ^ {3} \cdot 3} = 27\frac{1}{24} = 27.041666666666668
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{1}{6}\left(\frac{6+1}{2}-\frac{2\times 4+1}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
6 मेळोवंक 3 आनी 2 गुणचें.
\frac{1}{6}\left(\frac{7}{2}-\frac{2\times 4+1}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
7 मेळोवंक 6 आनी 1 ची बेरीज करची.
\frac{1}{6}\left(\frac{7}{2}-\frac{8+1}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
8 मेळोवंक 2 आनी 4 गुणचें.
\frac{1}{6}\left(\frac{7}{2}-\frac{9}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
9 मेळोवंक 8 आनी 1 ची बेरीज करची.
\frac{1}{6}\left(\frac{14}{4}-\frac{9}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
2 आनी 4 चो किमान सामान्य गुणाकार आसा 4. 4 डिनोमिनेशना सयत \frac{7}{2} आनी \frac{9}{4} अपूर्णांकांत रुपांतरीत करचे.
\frac{1}{6}\times \frac{14-9}{4}+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
\frac{14}{4} आनी \frac{9}{4} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर वजा करून तांची वजाबाकी करची.
\frac{1}{6}\times \frac{5}{4}+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
5 मेळोवंक 14 आनी 9 वजा करचे.
\frac{1\times 5}{6\times 4}+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
न्युमरेटर वेळा न्युमरेटराक आनी डिनोमिनेटर वेळा डिनोमिनेटराक गुणून \frac{5}{4} वेळा \frac{1}{6} गुणचें.
\frac{5}{24}+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
फ्रॅक्शन \frac{1\times 5}{6\times 4} त गुणाकार करचे.
\frac{5}{24}+\frac{\left(5\times 8+1\right)\times 16}{8\times 3}-\frac{1}{2}
\frac{3}{16} च्या पुरकाक \frac{5\times 8+1}{8} गुणून \frac{3}{16} न \frac{5\times 8+1}{8} क भाग लावचो.
\frac{5}{24}+\frac{2\left(1+5\times 8\right)}{3}-\frac{1}{2}
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय 8 रद्द करचो.
\frac{5}{24}+\frac{2\left(1+40\right)}{3}-\frac{1}{2}
40 मेळोवंक 5 आनी 8 गुणचें.
\frac{5}{24}+\frac{2\times 41}{3}-\frac{1}{2}
41 मेळोवंक 1 आनी 40 ची बेरीज करची.
\frac{5}{24}+\frac{82}{3}-\frac{1}{2}
82 मेळोवंक 2 आनी 41 गुणचें.
\frac{5}{24}+\frac{656}{24}-\frac{1}{2}
24 आनी 3 चो किमान सामान्य गुणाकार आसा 24. 24 डिनोमिनेशना सयत \frac{5}{24} आनी \frac{82}{3} अपूर्णांकांत रुपांतरीत करचे.
\frac{5+656}{24}-\frac{1}{2}
\frac{5}{24} आनी \frac{656}{24} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{661}{24}-\frac{1}{2}
661 मेळोवंक 5 आनी 656 ची बेरीज करची.
\frac{661}{24}-\frac{12}{24}
24 आनी 2 चो किमान सामान्य गुणाकार आसा 24. 24 डिनोमिनेशना सयत \frac{661}{24} आनी \frac{1}{2} अपूर्णांकांत रुपांतरीत करचे.
\frac{661-12}{24}
\frac{661}{24} आनी \frac{12}{24} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर वजा करून तांची वजाबाकी करची.
\frac{649}{24}
649 मेळोवंक 661 आनी 12 वजा करचे.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}