मूल्यांकन करचें
\frac{47\sqrt{5}-56\sqrt{2}}{37}\approx 0.699979336
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}
न्युमरेटर आनी डिनोमिनेटर 3\sqrt{5}-2\sqrt{2} न गुणून \frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)}{3\sqrt{5}+2\sqrt{2}} चो डिनोमिनेटर रेशनलायझ तर्कसंगत करचो.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
विचारांत घेयात \left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{3^{2}\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
\left(3\sqrt{5}\right)^{2} विस्तारीत करचो.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
9 मेळोवंक 2 चो 3 पॉवर मेजचो.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\times 5-\left(2\sqrt{2}\right)^{2}}
\sqrt{5} चो वर्ग 5 आसा.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-\left(2\sqrt{2}\right)^{2}}
45 मेळोवंक 9 आनी 5 गुणचें.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-2^{2}\left(\sqrt{2}\right)^{2}}
\left(2\sqrt{2}\right)^{2} विस्तारीत करचो.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\left(\sqrt{2}\right)^{2}}
4 मेळोवंक 2 चो 2 पॉवर मेजचो.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\times 2}
\sqrt{2} चो वर्ग 2 आसा.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-8}
8 मेळोवंक 4 आनी 2 गुणचें.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
37 मेळोवंक 45 आनी 8 वजा करचे.
\frac{\left(3\left(\sqrt{5}\right)^{2}+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
\sqrt{5}-\sqrt{2}च्या प्रत्येकी टर्माक 3\sqrt{5}+\sqrt{2} च्या प्रत्येकी टर्मान गुणाकार करून वितरक गुणधर्म लागू करचो.
\frac{\left(3\times 5+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
\sqrt{5} चो वर्ग 5 आसा.
\frac{\left(15+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
15 मेळोवंक 3 आनी 5 गुणचें.
\frac{\left(15+\sqrt{10}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
\sqrt{5} आनी \sqrt{2} गुणूंक, वर्गमुळाच्या खाला संख्या गुणची.
\frac{\left(15+\sqrt{10}-3\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
\sqrt{2} आनी \sqrt{5} गुणूंक, वर्गमुळाच्या खाला संख्या गुणची.
\frac{\left(15-2\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
-2\sqrt{10} मेळोवंक \sqrt{10} आनी -3\sqrt{10} एकठांय करचें.
\frac{\left(15-2\sqrt{10}-2\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
\sqrt{2} चो वर्ग 2 आसा.
\frac{\left(13-2\sqrt{10}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
13 मेळोवंक 15 आनी 2 वजा करचे.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{10}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
13-2\sqrt{10}च्या प्रत्येकी टर्माक 3\sqrt{5}-2\sqrt{2} च्या प्रत्येकी टर्मान गुणाकार करून वितरक गुणधर्म लागू करचो.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{5}\sqrt{2}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
10=5\times 2 गुणकपद काडचें. \sqrt{5}\sqrt{2} च्या वर्ग मूळाचो गुणाकार म्हूण \sqrt{5\times 2} च्या वर्गमूळाचो गुणाकार परत बरोवचो.
\frac{39\sqrt{5}-26\sqrt{2}-6\times 5\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
5 मेळोवंक \sqrt{5} आनी \sqrt{5} गुणचें.
\frac{39\sqrt{5}-26\sqrt{2}-30\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
-30 मेळोवंक -6 आनी 5 गुणचें.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
-56\sqrt{2} मेळोवंक -26\sqrt{2} आनी -30\sqrt{2} एकठांय करचें.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{2}\sqrt{5}}{37}
10=2\times 5 गुणकपद काडचें. \sqrt{2}\sqrt{5} च्या वर्ग मूळाचो गुणाकार म्हूण \sqrt{2\times 5} च्या वर्गमूळाचो गुणाकार परत बरोवचो.
\frac{39\sqrt{5}-56\sqrt{2}+4\times 2\sqrt{5}}{37}
2 मेळोवंक \sqrt{2} आनी \sqrt{2} गुणचें.
\frac{39\sqrt{5}-56\sqrt{2}+8\sqrt{5}}{37}
8 मेळोवंक 4 आनी 2 गुणचें.
\frac{47\sqrt{5}-56\sqrt{2}}{37}
47\sqrt{5} मेळोवंक 39\sqrt{5} आनी 8\sqrt{5} एकठांय करचें.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}