मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
गुणकपद
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{\left(\frac{\left(\left(1-\frac{3}{8}+\frac{4}{5}-\frac{11}{20}\right)\left(\frac{3}{14}+\frac{5}{7}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
1 मेळोवंक 2 क 2 न भाग लावचो.
\frac{\left(\frac{\left(\left(\frac{5}{8}+\frac{4}{5}-\frac{11}{20}\right)\left(\frac{3}{14}+\frac{5}{7}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
\frac{5}{8} मेळोवंक 1 आनी \frac{3}{8} वजा करचे.
\frac{\left(\frac{\left(\left(\frac{57}{40}-\frac{11}{20}\right)\left(\frac{3}{14}+\frac{5}{7}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
\frac{57}{40} मेळोवंक \frac{5}{8} आनी \frac{4}{5} ची बेरीज करची.
\frac{\left(\frac{\left(\frac{7}{8}\left(\frac{3}{14}+\frac{5}{7}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
\frac{7}{8} मेळोवंक \frac{57}{40} आनी \frac{11}{20} वजा करचे.
\frac{\left(\frac{\left(\frac{7}{8}\left(\frac{13}{14}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
\frac{13}{14} मेळोवंक \frac{3}{14} आनी \frac{5}{7} ची बेरीज करची.
\frac{\left(\frac{\left(\frac{7}{8}\left(-\frac{1}{14}+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
-\frac{1}{14} मेळोवंक \frac{13}{14} आनी 1 वजा करचे.
\frac{\left(\frac{\left(\frac{7}{8}\times \frac{10}{7}\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
\frac{10}{7} मेळोवंक -\frac{1}{14} आनी \frac{3}{2} ची बेरीज करची.
\frac{\left(\frac{\left(\frac{5}{4}\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
\frac{5}{4} मेळोवंक \frac{7}{8} आनी \frac{10}{7} गुणचें.
\frac{\left(\frac{\frac{25}{16}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
\frac{25}{16} मेळोवंक 2 चो \frac{5}{4} पॉवर मेजचो.
\frac{\left(\frac{\frac{25}{16}}{\left(-1+\frac{1}{2}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
2 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{2}{4} उणो करचो.
\frac{\left(\frac{\frac{25}{16}}{\left(-\frac{1}{2}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
-\frac{1}{2} मेळोवंक -1 आनी \frac{1}{2} ची बेरीज करची.
\frac{\left(\frac{\frac{25}{16}}{\frac{1}{4}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
\frac{1}{4} मेळोवंक 2 चो -\frac{1}{2} पॉवर मेजचो.
\frac{\left(\frac{25}{16}\times 4\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
\frac{1}{4} च्या पुरकाक \frac{25}{16} गुणून \frac{1}{4} न \frac{25}{16} क भाग लावचो.
\frac{\left(\frac{25}{4}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
\frac{25}{4} मेळोवंक \frac{25}{16} आनी 4 गुणचें.
\frac{\frac{625}{16}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
\frac{625}{16} मेळोवंक 2 चो \frac{25}{4} पॉवर मेजचो.
\frac{\frac{625}{16}}{\left(\frac{4}{3}-\frac{1}{12}\right)^{2}}
\frac{4}{3} मेळोवंक \frac{5}{6} आनी \frac{1}{2} ची बेरीज करची.
\frac{\frac{625}{16}}{\left(\frac{5}{4}\right)^{2}}
\frac{5}{4} मेळोवंक \frac{4}{3} आनी \frac{1}{12} वजा करचे.
\frac{\frac{625}{16}}{\frac{25}{16}}
\frac{25}{16} मेळोवंक 2 चो \frac{5}{4} पॉवर मेजचो.
\frac{625}{16}\times \frac{16}{25}
\frac{25}{16} च्या पुरकाक \frac{625}{16} गुणून \frac{25}{16} न \frac{625}{16} क भाग लावचो.
25
25 मेळोवंक \frac{625}{16} आनी \frac{16}{25} गुणचें.