मूल्यांकन करचें
-\frac{ab^{3}}{3}
विस्तार करचो
-\frac{ab^{3}}{3}
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} विस्तारावचें \left(\frac{1}{2}a+\frac{2}{3}b\right)^{3}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
वितरक गूणधर्माचो वापर करून \frac{1}{2}a-\frac{2}{3}b क \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3} न गुणचें आनी संज्ञां भशेन एकठावणी करची.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
विचारांत घेयात \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\left(\frac{1}{4}a^{2}\right)^{2} विस्तारीत करचो.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\frac{1}{16} मेळोवंक 2 चो \frac{1}{4} पॉवर मेजचो.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\left(\frac{4}{9}b^{2}\right)^{2} विस्तारीत करचो.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\frac{16}{81} मेळोवंक 2 चो \frac{4}{9} पॉवर मेजचो.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\frac{1}{16}a^{4}-\frac{16}{81}b^{4} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
0 मेळोवंक \frac{1}{16}a^{4} आनी -\frac{1}{16}a^{4} एकठांय करचें.
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
0 मेळोवंक -\frac{16}{81}b^{4} आनी \frac{16}{81}b^{4} एकठांय करचें.
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}
\frac{1}{2}a^{2}+\frac{1}{9}b^{2} न -\frac{1}{3}ab गुणपाक विभाजक विशमाचो वापर करचो.
-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}
0 मेळोवंक \frac{1}{6}a^{3}b आनी -\frac{1}{6}a^{3}b एकठांय करचें.
-\frac{1}{3}ab^{3}
-\frac{1}{3}ab^{3} मेळोवंक -\frac{8}{27}ab^{3} आनी -\frac{1}{27}ab^{3} एकठांय करचें.
\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} विस्तारावचें \left(\frac{1}{2}a+\frac{2}{3}b\right)^{3}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
वितरक गूणधर्माचो वापर करून \frac{1}{2}a-\frac{2}{3}b क \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3} न गुणचें आनी संज्ञां भशेन एकठावणी करची.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
विचारांत घेयात \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\left(\frac{1}{4}a^{2}\right)^{2} विस्तारीत करचो.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\frac{1}{16} मेळोवंक 2 चो \frac{1}{4} पॉवर मेजचो.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\left(\frac{4}{9}b^{2}\right)^{2} विस्तारीत करचो.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\frac{16}{81} मेळोवंक 2 चो \frac{4}{9} पॉवर मेजचो.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\frac{1}{16}a^{4}-\frac{16}{81}b^{4} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
0 मेळोवंक \frac{1}{16}a^{4} आनी -\frac{1}{16}a^{4} एकठांय करचें.
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
0 मेळोवंक -\frac{16}{81}b^{4} आनी \frac{16}{81}b^{4} एकठांय करचें.
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}
\frac{1}{2}a^{2}+\frac{1}{9}b^{2} न -\frac{1}{3}ab गुणपाक विभाजक विशमाचो वापर करचो.
-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}
0 मेळोवंक \frac{1}{6}a^{3}b आनी -\frac{1}{6}a^{3}b एकठांय करचें.
-\frac{1}{3}ab^{3}
-\frac{1}{3}ab^{3} मेळोवंक -\frac{8}{27}ab^{3} आनी -\frac{1}{27}ab^{3} एकठांय करचें.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}