기본 콘텐츠로 건너뛰기
Microsoft
|
Math Solver
풀이
연습
놀다
주제
선 대수학
의미
모드
최대 공약수
최소 공통 배수
연산 순서
분수
혼합 분수
소인수분해
지수
라디칼
대수학
유사 용어 결합
변수 풀기
인수
확장
분수 평가
선형 방정식
2차 방정식
불균등
방정식 시스템
행렬
삼각법
단순화
평가
그래프
방정식 풀기
미적분학
파생어
적분
한계
Algebra 입력
삼각법 입력
미적분학 입력
행렬 입력
풀이
연습
놀다
주제
선 대수학
의미
모드
최대 공약수
최소 공통 배수
연산 순서
분수
혼합 분수
소인수분해
지수
라디칼
대수학
유사 용어 결합
변수 풀기
인수
확장
분수 평가
선형 방정식
2차 방정식
불균등
방정식 시스템
행렬
삼각법
단순화
평가
그래프
방정식 풀기
미적분학
파생어
적분
한계
Algebra 입력
삼각법 입력
미적분학 입력
행렬 입력
기본
대수학
삼각법
미적분학
통계
행렬
문자
계산
1
솔루션 단계 보기
해답 단계
\sin ( \frac { \pi } { 2 } )
삼각법 값 표에서 \sin(\frac{\pi }{2}) 값을 가져옵니다.
1
인수 분해
1
퀴즈
Trigonometry
\sin ( \frac { \pi } { 2 } )
비슷한 문제의 웹 검색 결과
How to find exact value of \displaystyle{\sin{{\left(\frac{\pi}{{24}}\right)}}} ?
https://socratic.org/questions/59f61ae811ef6b5f7f1618c6
\displaystyle{\sin{{\left(\frac{\pi}{{24}}\right)}}}=\frac{{1}}{{2}}\sqrt{{{2}-\sqrt{{{2}+\sqrt{{3}}}}}} Explanation: As \displaystyle\frac{\pi}{{24}}=\frac{{180}^{\circ}}{{24}}={\left({7}\frac{{1}}{{2}}\right)}^{\circ} ...
Can \sin(\pi/25) be expressed in radicals
https://math.stackexchange.com/questions/1288769/can-sin-pi-25-be-expressed-in-radicals
The answer to this question depends on exactly what you mean by expressed in radicals. In the sense which is usually meant in Galois theory courses, \cos \pi/25 is expressible in radicals, but in a ...
How to calculate \cos(\pi/4) and \sin(\pi/4)? [closed]
https://math.stackexchange.com/q/2074238
In the sum of angle theorems, let a=b so that \cos(2a)=\cos^2(a)-\sin^2(a) By the last identity, notice that \cos^2(a)-\sin^2(a)=2\cos^2(a)-1 \cos^2(a)-\sin^2(a)=1-2\sin^2(a) Now let a=\pi/4 ...
Solve \sin(\frac{\pi}{5}) analytically
https://math.stackexchange.com/q/2248326
By repeated application of angle sum formulas we may get, \sin (5x)=\sin^5 x+5 \cos^4 x\sin x-10 \sin^3 x \cos^2 x Let x=\frac{\pi}{5} and let \sin (\frac{\pi}{5})=u then we have, 0=u^5+5(1-u^2)^2 u-10(1-u^2)u^3 ...
Non-trigonometric Proof for values of \sin(\frac{\pi}{6}) and \cos(\frac{\pi}{6})
https://math.stackexchange.com/q/2113386
Hint: from \cos(2(\frac{\pi}{3})+\frac{\pi}{3})= \cos(\pi)=-1, using summation and double-angle formulas we have: \left(2\cos^2(\pi/3)-1 \right)\cos(\pi/3)-2\left(1-\cos^2(\pi/3)\right)\cos(\pi/3)+1=0 ...
Easy way of memorizing values of sine, cosine, and tangent
https://math.stackexchange.com/q/1553990
Note the pattern: \sin 0^{\circ} = \frac{\sqrt{0}}{2} \sin 30^{\circ} = \frac{\sqrt{1}}{2} \sin 45^{\circ} = \frac{\sqrt{2}}{2} \sin 60^{\circ} = \frac{\sqrt{3}}{2} \sin 90^{\circ} = \frac{\sqrt{4}}{2} ...
항목 더 보기
공유
복사
클립보드에 복사됨
1
삼각법 값 표에서 \sin(\frac{\pi }{2}) 값을 가져옵니다.
유사한 문제
\cos ( \pi )
\sin ( \frac { \pi } { 2 } )
\tan ( \frac { 4 \pi } { 3 } )
\csc ( 60 )
\sec ( 180 )
\cot ( \frac { 4 \pi } { 3 } )
맨 위로 돌아가기