기본 콘텐츠로 건너뛰기
인수 분해
Tick mark Image
계산
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

y\left(y+3\right)
y을(를) 인수 분해합니다.
y^{2}+3y=0
이차 다항식은 변환 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 인수 분해할 수 있습니다, 여기서 x_{1} 및 x_{2}는 이차방정식 ax^{2}+bx+c=0의 해답입니다.
y=\frac{-3±\sqrt{3^{2}}}{2}
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
y=\frac{-3±3}{2}
3^{2}의 제곱근을 구합니다.
y=\frac{0}{2}
±이(가) 플러스일 때 수식 y=\frac{-3±3}{2}을(를) 풉니다. -3을(를) 3에 추가합니다.
y=0
0을(를) 2(으)로 나눕니다.
y=-\frac{6}{2}
±이(가) 마이너스일 때 수식 y=\frac{-3±3}{2}을(를) 풉니다. -3에서 3을(를) 뺍니다.
y=-3
-6을(를) 2(으)로 나눕니다.
y^{2}+3y=y\left(y-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 원래 수식을 인수 분해합니다. 0을(를) x_{1}로 치환하고 -3을(를) x_{2}로 치환합니다.
y^{2}+3y=y\left(y+3\right)
p-\left(-q\right) 형식의 모든 수식을 p+q(으)로 단순화합니다.