x에 대한 해 (complex solution)
\left\{\begin{matrix}x=\pi n_{1}+\frac{\pi }{2}\text{, }n_{1}\in \mathrm{Z}\text{, }&y=0\\x=-i\ln(\frac{-\sqrt{y^{4}-25}+y^{2}}{5})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{; }x=-i\ln(\frac{\sqrt{y^{4}-25}+y^{2}}{5})+2\pi n_{3}\text{, }n_{3}\in \mathrm{Z}\text{, }&arg(y)<\pi \text{ and }y\neq 0\end{matrix}\right.
y에 대한 해 (complex solution)
y=\sqrt{5}\sqrt{\cos(x)}
x에 대한 해
x=ArcCosI(\frac{1}{5}y^{2})+2\pi n_{7}\text{, }n_{7}\in \mathrm{Z}\text{, }\exists n_{10}\in \mathrm{Z}\text{ : }\left(n_{7}>n_{10}\text{ and }n_{7}<n_{10}+2\right)
x=2n_{14}\pi +\left(-1\right)ArcCosI(\frac{1}{5}y^{2})\text{, }n_{14}\in \mathrm{Z}\text{, }\exists n_{10}\in \mathrm{Z}\text{ : }\left(n_{10}<n_{14}\text{ and }n_{10}>-2+n_{14}\right)
y에 대한 해
y=\sqrt{5\cos(x)}
\exists n_{1}\in \mathrm{Z}\text{ : }\left(x\geq 2\pi n_{1}-\frac{\pi }{2}\text{ and }x\leq 2\pi n_{1}+\frac{\pi }{2}\right)
그래프
공유
클립보드에 복사됨
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}