x d x - ( 5 y ^ { 4 } + 3 ) d y = 0
d에 대한 해 (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=-\sqrt{5y^{5}+3y}\text{ or }x=\sqrt{5y^{5}+3y}\end{matrix}\right.
d에 대한 해
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&y\geq 0\text{ and }|x|=\sqrt{y\left(5y^{4}+3\right)}\end{matrix}\right.
x에 대한 해 (complex solution)
\left\{\begin{matrix}\\x=-\sqrt{y\left(5y^{4}+3\right)}\text{; }x=\sqrt{y\left(5y^{4}+3\right)}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
x에 대한 해
\left\{\begin{matrix}x=\sqrt{y\left(5y^{4}+3\right)}\text{; }x=-\sqrt{y\left(5y^{4}+3\right)}\text{, }&y\geq 0\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
그래프
공유
클립보드에 복사됨
x^{2}d-\left(5y^{4}+3\right)dy=0
x과(와) x을(를) 곱하여 x^{2}(을)를 구합니다.
x^{2}d-\left(5y^{4}d+3d\right)y=0
분배 법칙을 사용하여 5y^{4}+3에 d(을)를 곱합니다.
x^{2}d-\left(5dy^{5}+3dy\right)=0
분배 법칙을 사용하여 5y^{4}d+3d에 y(을)를 곱합니다.
x^{2}d-5dy^{5}-3dy=0
5dy^{5}+3dy의 반대수를 찾으려면 각 항의 반대수를 찾으세요.
\left(x^{2}-5y^{5}-3y\right)d=0
d이(가) 포함된 모든 항을 결합합니다.
d=0
0을(를) x^{2}-5y^{5}-3y(으)로 나눕니다.
x^{2}d-\left(5y^{4}+3\right)dy=0
x과(와) x을(를) 곱하여 x^{2}(을)를 구합니다.
x^{2}d-\left(5y^{4}d+3d\right)y=0
분배 법칙을 사용하여 5y^{4}+3에 d(을)를 곱합니다.
x^{2}d-\left(5dy^{5}+3dy\right)=0
분배 법칙을 사용하여 5y^{4}d+3d에 y(을)를 곱합니다.
x^{2}d-5dy^{5}-3dy=0
5dy^{5}+3dy의 반대수를 찾으려면 각 항의 반대수를 찾으세요.
\left(x^{2}-5y^{5}-3y\right)d=0
d이(가) 포함된 모든 항을 결합합니다.
d=0
0을(를) x^{2}-5y^{5}-3y(으)로 나눕니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}