기본 콘텐츠로 건너뛰기
계산
Tick mark Image
x 관련 미분
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

\frac{x^{3}\left(x+3\right)}{x+3}+\frac{1}{x+3}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. x^{3}에 \frac{x+3}{x+3}을(를) 곱합니다.
\frac{x^{3}\left(x+3\right)+1}{x+3}
\frac{x^{3}\left(x+3\right)}{x+3} 및 \frac{1}{x+3}의 분모가 같으므로 분자를 더하여 이 둘을 더합니다.
\frac{x^{4}+3x^{3}+1}{x+3}
x^{3}\left(x+3\right)+1에서 곱하기를 합니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}\left(x+3\right)}{x+3}+\frac{1}{x+3})
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. x^{3}에 \frac{x+3}{x+3}을(를) 곱합니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}\left(x+3\right)+1}{x+3})
\frac{x^{3}\left(x+3\right)}{x+3} 및 \frac{1}{x+3}의 분모가 같으므로 분자를 더하여 이 둘을 더합니다.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}+3x^{3}+1}{x+3})
x^{3}\left(x+3\right)+1에서 곱하기를 합니다.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+3x^{3}+1)-\left(x^{4}+3x^{3}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
임의의 두 미분 함수에 대해, 두 함수의 몫의 미분 계수는 분모와 분자의 미분 계수를 곱한 값에서 분자와 분모의 미분 계수를 곱한 값을 빼고 모두를 제곱 분모로 나눈 값입니다.
\frac{\left(x^{1}+3\right)\left(4x^{4-1}+3\times 3x^{3-1}\right)-\left(x^{4}+3x^{3}+1\right)x^{1-1}}{\left(x^{1}+3\right)^{2}}
다항식의 미분 계수는 해당 항의 미분 계수의 합입니다. 상수 항의 미분 계수는 0입니다. ax^{n}의 미분 계수는 nax^{n-1}입니다.
\frac{\left(x^{1}+3\right)\left(4x^{3}+9x^{2}\right)-\left(x^{4}+3x^{3}+1\right)x^{0}}{\left(x^{1}+3\right)^{2}}
단순화합니다.
\frac{x^{1}\times 4x^{3}+x^{1}\times 9x^{2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}+3x^{3}+1\right)x^{0}}{\left(x^{1}+3\right)^{2}}
x^{1}+3에 4x^{3}+9x^{2}을(를) 곱합니다.
\frac{x^{1}\times 4x^{3}+x^{1}\times 9x^{2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}x^{0}+3x^{3}x^{0}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
x^{4}+3x^{3}+1에 x^{0}을(를) 곱합니다.
\frac{4x^{1+3}+9x^{1+2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}+3x^{3}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
같은 기수의 제곱을 곱하려면 해당 지수를 더합니다.
\frac{4x^{4}+9x^{3}+12x^{3}+27x^{2}-\left(x^{4}+3x^{3}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
단순화합니다.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-x^{0}}{\left(x^{1}+3\right)^{2}}
동류항을 결합합니다.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-x^{0}}{\left(x+3\right)^{2}}
모든 항 t에 대해, t^{1}=t.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-1}{\left(x+3\right)^{2}}
0 이외의 모든 항 t에 대해, t^{0}=1.