x에 대한 해
x=-4
x=-1
그래프
공유
클립보드에 복사됨
x^{2}-16+5x+20=0
분배 법칙을 사용하여 5에 x+4(을)를 곱합니다.
x^{2}+4+5x=0
-16과(와) 20을(를) 더하여 4을(를) 구합니다.
x^{2}+5x+4=0
다항식을 표준 형식으로 재정렬합니다. 항을 최고 곱에서 최저 곱의 순으로 배치합니다.
a+b=5 ab=4
방정식을 계산 하려면 수식 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right)을 사용 하 x^{2}+5x+4. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
1,4 2,2
ab은 양수 이기 때문에 a 및 b는 동일한 기호를가지고 있습니다. a+b은 양수 이기 때문에 a 및 b 모두 양수입니다. 제품 4을(를) 제공하는 모든 정수 쌍을 나열합니다.
1+4=5 2+2=4
각 쌍의 합계를 계산합니다.
a=1 b=4
이 해답은 합계 5이(가) 도출되는 쌍입니다.
\left(x+1\right)\left(x+4\right)
가져온 값을 사용하여 인수 분해식 \left(x+a\right)\left(x+b\right)을(를) 다시 작성하세요.
x=-1 x=-4
수식 솔루션을 찾으려면 x+1=0을 해결 하 고, x+4=0.
x^{2}-16+5x+20=0
분배 법칙을 사용하여 5에 x+4(을)를 곱합니다.
x^{2}+4+5x=0
-16과(와) 20을(를) 더하여 4을(를) 구합니다.
x^{2}+5x+4=0
다항식을 표준 형식으로 재정렬합니다. 항을 최고 곱에서 최저 곱의 순으로 배치합니다.
a+b=5 ab=1\times 4=4
수식을 계산하려면 그룹화를 통해 왼쪽을 인수 분해합니다. 우선 왼쪽을 x^{2}+ax+bx+4(으)로 다시 작성해야 합니다. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
1,4 2,2
ab은 양수 이기 때문에 a 및 b는 동일한 기호를가지고 있습니다. a+b은 양수 이기 때문에 a 및 b 모두 양수입니다. 제품 4을(를) 제공하는 모든 정수 쌍을 나열합니다.
1+4=5 2+2=4
각 쌍의 합계를 계산합니다.
a=1 b=4
이 해답은 합계 5이(가) 도출되는 쌍입니다.
\left(x^{2}+x\right)+\left(4x+4\right)
x^{2}+5x+4을(를) \left(x^{2}+x\right)+\left(4x+4\right)(으)로 다시 작성합니다.
x\left(x+1\right)+4\left(x+1\right)
첫 번째 그룹 및 4에서 x를 제한 합니다.
\left(x+1\right)\left(x+4\right)
분배 법칙을 사용하여 공통항 x+1을(를) 인수 분해합니다.
x=-1 x=-4
수식 솔루션을 찾으려면 x+1=0을 해결 하 고, x+4=0.
x^{2}-16+5x+20=0
분배 법칙을 사용하여 5에 x+4(을)를 곱합니다.
x^{2}+4+5x=0
-16과(와) 20을(를) 더하여 4을(를) 구합니다.
x^{2}+5x+4=0
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
x=\frac{-5±\sqrt{5^{2}-4\times 4}}{2}
이 수식은 표준 형식 ax^{2}+bx+c=0입니다. 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}에서 1을(를) a로, 5을(를) b로, 4을(를) c로 치환합니다.
x=\frac{-5±\sqrt{25-4\times 4}}{2}
5을(를) 제곱합니다.
x=\frac{-5±\sqrt{25-16}}{2}
-4에 4을(를) 곱합니다.
x=\frac{-5±\sqrt{9}}{2}
25을(를) -16에 추가합니다.
x=\frac{-5±3}{2}
9의 제곱근을 구합니다.
x=-\frac{2}{2}
±이(가) 플러스일 때 수식 x=\frac{-5±3}{2}을(를) 풉니다. -5을(를) 3에 추가합니다.
x=-1
-2을(를) 2(으)로 나눕니다.
x=-\frac{8}{2}
±이(가) 마이너스일 때 수식 x=\frac{-5±3}{2}을(를) 풉니다. -5에서 3을(를) 뺍니다.
x=-4
-8을(를) 2(으)로 나눕니다.
x=-1 x=-4
수식이 이제 해결되었습니다.
x^{2}-16+5x+20=0
분배 법칙을 사용하여 5에 x+4(을)를 곱합니다.
x^{2}+4+5x=0
-16과(와) 20을(를) 더하여 4을(를) 구합니다.
x^{2}+5x=-4
양쪽 모두에서 4을(를) 뺍니다. 0에서 모든 항목을 뺀 결과는 해당 항목의 음수입니다.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-4+\left(\frac{5}{2}\right)^{2}
x 항의 계수인 5을(를) 2(으)로 나눠서 \frac{5}{2}을(를) 구합니다. 그런 다음 \frac{5}{2}의 제곱을 수식의 양쪽에 더합니다. 이 단계를 수행하면 수식의 왼쪽이 완전 제곱이 됩니다.
x^{2}+5x+\frac{25}{4}=-4+\frac{25}{4}
분수의 분자와 분모를 모두 제곱하여 \frac{5}{2}을(를) 제곱합니다.
x^{2}+5x+\frac{25}{4}=\frac{9}{4}
-4을(를) \frac{25}{4}에 추가합니다.
\left(x+\frac{5}{2}\right)^{2}=\frac{9}{4}
인수 x^{2}+5x+\frac{25}{4}. 일반적으로 x^{2}+bx+c 완벽한 제곱인 경우 항상 \left(x+\frac{b}{2}\right)^{2} 인수로 지정할 수 있습니다.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
수식 양쪽의 제곱근을 구합니다.
x+\frac{5}{2}=\frac{3}{2} x+\frac{5}{2}=-\frac{3}{2}
단순화합니다.
x=-1 x=-4
수식의 양쪽에서 \frac{5}{2}을(를) 뺍니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}